Гомогенизатор: принцип работы, конструкция и применение в молочной промышленности. Оборудование для гомогенизации молока Влияние гомогенизированных молочных продуктов на организм человека

Гомогенизаторы предназначены для дробления жировых шариков в молоке, жидких молочных продуктах и смесях мороженного. Они применяются в различных технологических линиях для молока и молочных продуктов. Для гомогенизации молока известно и другое оборудование (эмульгаторы, эмульсоры, вибраторы и др.), но оно менее эффективно.

Наибольшее применение в молочной отрасли получили гомогенизаторы клапанного типа К5 - ОГ2А - 1,25; А1 - ОГМ 2,5 и А1 - ОГМ, представляют собой многоплунжерные насосы высокого давления с гомогенизирующей головкой. Гомогенизаторы состоят из следующих основных узлов: кривошипно - шатунного механизма с системой смазки и охлаждения, плунжерного блока с гомогенизирующей и манометрическими головками и предохранительным клапанном, станины. Привод осуществляется от электродвигателя с помощью клиноременной передачи. Кривошипно - шатунный механизм преобразует вращательное движение, передаваемое клиноременной передачей от электродвигателя, в возвратно - поступательное движение плунжеров. Последние посредством манжетных уплотнений входят в рабочие камеры плунжерного блока и совершая всасывающие и нагнетательные ходы, создают необходимое давление гомогенизируемей жидкости. Кривошипно - шатунный механизм описываемых гомогенизаторов состоит из коленчатого вала, установленного на двух конических роликоподшипниках; крышек подшипников; шатунов с крышками и вкладышами; ползунов, шарнирно соединенных с шатунами с помощью пальцев; стаканов; уплотнений; крышки корпуса и ведомого шкива, консольно закрепленного на конце коленчатого вала. Внутренняя полость кривошипно - шатунного механизма - масляная ванна. Задней стенки корпуса смонтированы маслоуказатель и сливная пробка. В гомогенизаторе К5 - ОГ2А - 1,25 смазка трущихся деталей кривошипно -шатунного механизма производится путем разбрызгивания масла вращающимся коленчатым валом. Конструкция корпуса и сравнительно небольшие нагрузки на кривошипно - шатунный механизм гомогенизатора К5 - ОГ2А - 1,25 позволяет охладить масло, помещенное внутри корпуса, за счет теплоотдачи с поверхности в окружающую среду. Водопроводной водой охлаждаются только плунжеры. В гомогенизаторах А1 - ОГМ - 2,5 и А1 - ОГМ в сочетании с разбрызгиванием масла в нутрии корпуса применяют принудительную систему смазки наиболее нагруженных трущихся пар, что увеличивает теплоотдачу. Масло в этих гомогенизаторах охлаждается теплопроводной водой которая поступает в змеевик охлаждающего устройства, уложенного на дне корпуса, а плунжеры водопроводной водой, подающей на них через отверстие в трубе. В системе установлено реле протока для контроля за протеканием воды. К корпусу КШМ с помощью двух шпилек прикрепляется плунжерный блок, предназначенный для всасывания продукта из подающей магистрали и нагнетания его под высоким давлением в гомогенизирующую головку. Плунжерный блок включает в себя корпус, плунжеры манжетные уплотнения, нижнее, верхнее и передние крышки, всасывающие и нагнетательные клапаны, седла клапанов, прокладки, втулки, пружины, фланец, штуцер, фильтр во всасывающем канале блока. На торцевой плоскости плунжерного блока имеет гомогенизирующая головка, предназначенная для выполнения двухступенчатой гомогенизации продукта за счет его прохода под высоким давлением через щель между клапанном и седлом клапана в каждой системе ступени. На верхней плоскости плунжерного блока закреплена манометрическая головка для контроля давления гомогенизации. Манометрическая головка имеет дросселирующее устройство дающее возможность эффективно уменьшать амплитуду колебания стрелки манометра. Манометрическая головка состоит из корпуса, иглы, уплотнения, поджимающей гайки, шайбы и манометра с мембранным разделителем. В торцевой плоскости плунжерного блока со стороны, противоположной крепления гомогенизирующей головки, распложен предохранительный клапан, который предотвращает повышение давления гомогенизации по сравнению с номинальным. Предохранительный клапан включает в себя винт, контргайку, пяту, пружину, клапан и седло клапана. На максимальное давление гомогенизации предохранительный клапан настраивают, вращая прижимной винт, который воздействует на клапан через пружину. Станина гомогенизатора представляет собой литую или сварную конструкцию из швеллеров, облитой листовой сталью. На верхней плоскости станины установлен КШМ. Внутри на двух кронштейнах шарнирно закреплена плита с размещенной на ней эл. двигателем. Кроме того плита поддерживается винтами, регулирующие клиновых ремней. Станина имеет четыре регулируемые по высоте опоры. Боковые окна станины закрываются съемными крышками. Молоко или молочный продукт подается с помощью насоса во всасывающий канал плунжерного блока. Из рабочей полости блока продукт под давлением попадает через нагнетательный клапан гомогенизирующую головку с большой скорости проходит через лицевой зазор, образующийся между притертыми поверхностями гомогенизирующего клапана и его седлом. При этом происходит диспергирование жидкой фазы продукта. Из гомогенизатора продукт направляется по молокопроводу на дальнейшую переработку или предварительное хранение.

Гомогенизирующие головки подвергались тем или другим мало существующим изменениям, однако, принцип устройства их сохраняющихся до сих пор без изменения. Форма рабочей поверхности клапана обычно плоская, тарельчатая или конусная с небольшим углом конусности. У гомогенизатора с плоскими клапанами с концентрическими рифлями располагаются такие же рифли на поверхности седла. Следовательно, форма прохода для молока в радиальном направлении изменяется, что должно способствовать лучшей гомогенизации. Жидкий продукт в головку может нагнетаться любым насосом, обладающим равномерной подачей и способна создавать высокое давление. Для этой цели применимы многоплунжерные, ротационные и винтовые насосы. Наибольшее распространение нашли гомогенизаторы высокого давления с трехплунжерными насосами.

Схема устройства плунжерного гомогенизатора клапанного типа показана на рис. 3

Молоко при ходе плунжера влево проходит через всасывающий клапан 3 в цилиндр, а при ходе плунжера вправо проталкивается через клапан 4 в нагнетательную камеру, на которой установлен манометр 10 для контроля давления. Далее молоко по каналу в головку 5,в которой поджимает клапан 7, прижимаемый к седлу 6 пружиной 8. Натяжение пружины регулируется винтом 11. Клапан и седло притерты друг к другу. В нерабочем положении клапан плотно прижат к седлу пружиной 8, которая стала регулировочным винтом 11, а в рабочем, когда нагнетается жидкость, клапан приподнят давлением жидкости и находится в «плавающем» состоянии. Характерным показателем режимы гомогенизации, играющим большую роль при регулировке машины, является давление гомогенизации. Чем оно выше, тем эффективнее процесс диспергирования. Давление регулируют винтом 11, руководствуясь показаниями манометра 10. При завинчивании винта давления пружины на клапан увеличивается следовательно, высота клапанной щели увеличивается. Это приводит к увеличению гидравлических сопротивлений при движении жидкости через клапан, т. е. к увеличению давления, необходимого для проталкивания данного количества жидкости.

Способность плунжерного насоса создавать высокое давление ставит под угрозу сохранность деталей в случаи, если канал засориться в седле клапана. Поэтому гомогенизатор снабжен предохранительным клапаном 9, через который жидкость выходит наружу, когда давление в машине выше установленного. Придельное давление, при котором предохранительный клапан открывается, регулируют, затягивая винтом пружину.

На рис. 4 приведен гомогенизатор с двойным дросселированием, в котором жидкость проходит последовательно через две рабочие головки. В каждой головки давление пружины на клапан регулируется отдельно, своим винтом. В таких головках гомогенизация происходит в две ступени.

Рабочее давление в нагнетательной камере равно сумме обоих перепадов. Применение двухступенчатой гомогенизации обусловлено преимущественно тем, что во многих эмульсиях после гомогенизации в первой ступени наблюдается на выходе обратное слипание диспергированных частиц и образование «гроздьев», которые ухудшают эффект диспергирования.

Задача второй ступени состоит в раздроблении, рассеиваний таких сравнительно неустойчивых образований.

Для этого требуется уже ни столь значительное механическое воздействие, поэтому перепад давлений во второй вспомогательной ступени гомогенизатора значительно меньше, чем в первой, от работы которой в основном и зависит степень гомогенизации.

Рисунок 4 - Схема двухступенчатой гомогенизации

В общем конструктивном оформлении современных гомогенизаторов находит применение основные принципы и положения технической эстетики, санитарии и гигиены. Следуя новым тенденциям в развитиям оборудования молочных предприятий, новые конструкции гомогенизаторов выполняют обтекаемой формы, облицовывают и закрывают кожухами из нержавеющей сталью с полированной поверхностью.

Исходя из производительности гомогенизатора и конструктивных соображений, за прототип выбираем гомогенизатор марки А1 - ОГМ - 2,5.

Сырое молоко проходит несколько этапов подготовки перед тем, как поступить на условный конвейер пищевой промышленности. На данный момент существует несколько групп химических, термических и биологических перерабатывающих операций. Особое место в общем комплексе подготовки сырьевого продукта занимает гомогенизация молока. Это технология механической обработки, но в зависимости от конкретной методики проведения она может включать также отдельные процедуры теплового и химического воздействия.

Общие сведения о гомогенизации

В принципе данная технология используется как способ механической переработки молочных и других жидких продуктов с целью повышения дисперсности их жировой фазы. В ходе технологического процесса также понижается неоднородность распределения химических элементов по всему объему гетерофазной системы. При этом не стоит путать данную методику с диспергированием как таковым. Согласно определению гомогенизации молока, дробление дисперсной фазы не является обязательным условием технологического процесса. К примеру, процедура смешивания твердых порошкообразных веществ вполне может исключать эту операцию. И наоборот, диспергирование гетерофазной системы может подразумевать и также исключать процедуру гомогенизации.

Назначение технологии

Цели гомогенизации могут различаться в зависимости от текущего состояния сырого молока и требований к конечному продукту. Среди наиболее распространенных задач можно отметить своего рода эффект сепарации жировых шариков по диаметру, что позволяет формировать сливки. Также этот процесс обеспечивает стабильность жира в сырьевом продукте. Для понимания значимости гомогенизации стоит отметить, что объем и количество шариков жира в сыром молоке непостоянны - эти характеристики определяются рационом кормления, стадией лактации и породы животного. Например, в 1 мм свежего молочного продукта содержится до 4 млрд жировых шариков при среднем диаметре порядка 2-3 мкм с колебаниями от 0,5 до 15 мкм. В обеспечении однородности величин этих шариков и заключается основное назначение гомогенизации молока как одного из первоначальных процессов переработки сырья при изготовлении сыра, творога, ряженки и т. д. Причем усреднение и выравнивание размерных параметров обычно достигается за счет уменьшения жировых шариков в 10 раз - примерно до 1 мкм.

Требования к процессу гомогенизации

Рассматриваемый метод молочной переработки нельзя рассматривать в отрыве от сопряженных технологических процессов подготовки продукта к конечному производству. В частности, гомогенизация молока - это процедура, которая может быть связана с операциями хранение, транспортировки и последующих операций пастеризации. Соответственно, существуют универсальные общие требования для обработки молока, которые относятся в большей степени к санитарно-гигиеническим нормативам, но существуют и специальные правила выполнения гомогенизации. В их числе можно отметить следующие:

  • Перед обработкой молочное сырье проходит первичную фильтрацию и охлаждение.
  • Температура молока должна варьироваться в диапазоне от 4 до 6 °С. Конкретный режим определит допустимое время хранения до и после переработки - как правило, не более 6 ч.
  • Среднее давление при гомогенизации молока составляет 10 МПа. При этом для нормализации гетерофазной структуры может потребоваться увеличения раздела фаз на 500 тыс. м 2 для каждой тонны сырья.
  • Гомогенизация выполняется перед пастеризацией. Исключения могут быть в случае, если операция проводится при 60 °С. Данный режим обычно применяется при получении обезжиренного молока и сливок, но и в этой технологической схеме после гомогенизации будет следовать уже дополнительная пастеризация.

Применяемое оборудование

Технически операция выполняется путем воздействия внешнего усилия, источником которого является гомогенизатор. Это специальная машина, воздействующая на целевой продукт механическим давлением, электричеством или ультразвуком. Чаще применяются агрегаты с механическим принципом работы. Основным рабочим элементом такого оборудования для гомогенизации молока выступает головка с кольцевой клапанной щелью, через которую и пропускаются жировые шарики. Силовую поддержку обеспечивает насос, мощность которого позволяет создавать давление до 20 МПа. Его достаточно для уменьшения шариков до 0,7 мкм, но, как уже говорилось, чаще используется режим давления в 10 МПа, при котором выпускаются жировые частицы фракцией 1-2 мкм. Разные модели гомогенизаторов имеют одно- или двухступенчатую конструкцию. Соответственно, одновременно может выпускаться один или два продукта (с разной степенью жирности).

Общая техника проведения гомогенизации

После предварительной подготовки молочного сырья к механической сепарации, выполняется следующий перечень действий:

  • Перемешивание дисперсной среды с жидкой дисперсионной системой на мощностях диспергатора.
  • Молочная среда прокачивается под давлением через головки гомогенизатора. Жировая дисперсная фаза проходит измельчение до нужной фракции.
  • Более тонкий процесс гомогенизации молока, предполагающий перемешивание мелких жировых фракций в специальных смесителях.
  • Пастеризация с тепловым воздействием.
  • Охлаждение продукта.

Между технологическими этапами могут применяться вспомогательные или промежуточные операции в разной последовательности. Это касается подогрева, очистки и стерилизации.

Полная гомогенизация

Данный способ гомогенизации считается наиболее распространенным на производствах, где выпускаются питьевые молочные продукты. Главной особенностью метода является исключение фазной сепарации. Иными словами, процессу дробления подвергается вся молочная сырьевая масса без предварительного разделения. Полная гомогенизация молока - это и оптимальный способ получения нормализованного сухого обезжиренного остатка, который в дальнейшем может использоваться при изготовлении йогуртов.

Раздельная гомогенизация

Этот метод также имеет широкое распространение, но считается в большей степени специализированным. Дело в том, что процесс раздельной гомогенизации ориентируется на работу с определенной частью загруженной сырьевой массы. Например, выделяется определенная доля жирового продукта по конкретным характеристикам. В классической схеме отсекается основная часть обезжиренного молока, но существуют и промежуточные способы сепарации и дальнейшей гомогенизации, при которых разделение проходит по конкретным параметрам жира. Среди достоинств такой методики отмечается не только возможность получения более качественного продукта, но и экономичность процесса. Наибольший коэффициент эффективности гомогенизации молока с разделением фракций достигается, если на 1 г жира приходится не меньше 0,2 г казеина.

Температура молока при выполнении гомогенизации

Один из важнейших параметров, также обуславливающих степень качества конечного продукта и эффективность всего процесса. Достаточно сказать, что критическое снижение температурного режима может привести к увеличению вязкости сырого молока и формированию густых жировых скоплений. Как минимум для обеспечения отстаивания сливок температура гомогенизации молока должна составлять 30-40 °С.

Но также и слишком высокие температуры могут негативно влиять на физико-химическое состояние гетерофазной среды. В этом случае на рабочих поверхностях оборудования могут образовываться белковые отложения, что затруднит процесс механического выполнения операций. Для регуляции тепловой степени гомогенизации молока используются промежуточные средства пастеризации с поэтапным наращиванием температуры на 5-8 °С. На этом же технологическом этапе могут применяться операции стерилизации и термовакуумная обработка, если есть потребность в корректировке других параметров молока.

Эффекты гомогенизации

С точки зрения пищевого производства и потребительских качеств данная технология обработки способствует обеспечению следующих свойств продукта:

  • Для сливок и молока - повышение однородности (по цвету, вкусу и жирности).
  • Для стерилизованных сливочных и молочных продуктов - увеличение периода хранения.
  • Для цельного сухого молока - регуляция кислотности и жира.
  • Для кисломолочной продукции - исключение жировой пробки на поверхности, повышению стойкости, улучшение белковой консистенции.
  • Для сгущенных продуктов - при длительном хранении естественная регуляция выделения жировых фаз.
  • Для молочных продуктов с наполнителями - повышение вязкости, улучшение вкуса и минимизация рисков образования осадка.

В целом можно сказать, что правильно организованные процессы стерилизации, гомогенизации и пастеризации молока комплексно затрагивают биологические и физико-химические свойства сырья, которые оказывают влияние на возможности содержания и гастрономические качества обрабатываемого продукта.

Контроль качества гомогенизированного сырого молока

После механической обработки выполняется контроль характеристик молочного продукта. В частности, берутся во внимание такие показатели, как массовая доля жира, степень чистоты и т. д. Что касается жировой доли, то она определяется метрическими, экспрессными и кислотными методами. Например, последний способ наиболее популярен. Он предполагает смешивание определенной дозы молока с концентрированной серной кислоты при последующем центрифугировании. Далее посредством градуированной части жиромера в контрольном оборудовании определяется объем выделившегося жира.

Чистота молока определяется специальными фильтрами, дополненными иглопробивным термо-полотном. По объему примесей фиксируется степень чистоты продукта. Также задействуются и средства комплексного анализа. С помощью пипетки для гомогенизации молока с ценой деления порядка 0,1 см 3 берутся пробы, которые в дальнейшем испытываются путем нагрева, химических и биологических реакций. В конечном итоге делается лабораторный отчет о характеристиках молочного продукта, прошедшего гомогенизацию.

Заключение

При всех положительных эффектах гомогенизации, многие специалисты относятся к ней критически из-за выработки вредных ферментов. Впрочем, на данный момент не существует достоверных исследований, которые бы выявили существенную для здоровья человека разницу между натуральным и обработанным таким способом молочным продуктом. Более того, на сегодняшний день гомогенизация молока - это комплекс производственных процессов, которые стали необходимостью в пищевой промышленности. Этот метод механической обработки используется не только в отношении к свежему молоку, но и в восстановлении сухого молочного сырья путем регуляции степени жирности. Другое дело, что в каждом случае применяются и модифицирующие химические добавки, наличие которых в продукте в принципе снижает его ценность.

Гомогенизация - это раздробление (диспергирование) жировых шариков путем воздействия на молоко или сливки значительных внешних усилий. В процессе обработки уменьшаются размеры жировых шариков и скорость их всплывания при хранении. Происходит перераспределение оболочечного вещества жирового шарика, стабилизируется жировая эмульсия, и гомогенизированное молоко не отстаивается.

Гомогенизаторы клапанного типа служат для обработки молока и сливок с целью предотвращения их расслаивания при хранении.

Гомогенизаторы-пластификаторы роторного типа применяют для изменения консистенции таких молочных продуктов, как плавленые сыры и сливочное масло. В обработанном с их помощью сливочном масле водная фаза диспергируется, в результате чего продукт лучше хранится.

Принцип действия гомогенизаторов клапанного типа, получивших наибольшее распространение, заключается в следующем.

В цилиндре гомогенизатора на молоко оказывается механическое воздействие при давлении 15...20 МПа. При подъеме клапана, приоткрывающего узкую щель, молоко выходит из цилиндра. Это возможно при достижении в цилиндре рабочего давления. При проходе через узкую круговую щель между седлом и клапаном скорость молока возрастает от нулевой до превышающей 100 м/с. Давление в потоке резко падает, и капля жира, попавшая в такой поток, вытягивается, а затем в результате действия сил поверхностного натяжения дробится на более мелкие капельки-частицы.

При работе гомогенизатора на выходе из клапанной щели часто наблюдается слипание раздробленных частичек и образование «гроздьев», снижающих эффективность гомогенизации. Во избежание этого применяют двухступенчатую гомогенизацию (рис. 3.17). На первой ступени создается давление, равное 75% рабочего, на второй - устанавливается рабочее давление. Для проведения гомогенизации температура молочного сырья должна быть 60...65°С. При более низкой температуре усиливается отстаивание жира, при более высокой могут осаждаться сывороточные белки.

Рис. 3.17.

  • 1 - седло клапана; 2 - клапан; 3 - шток; 4 - нажимной винт; 5 - стакан;
  • 6 - пружина; 7,8 - корпусы

Гомогенизатор с двухступенчатой гомогенизирующей головкой состоит из станины (рис. 3.18), корпуса, плунжерного блока, гомогенизирующей головки, привода и кривошипно-шатунного механизма.

Станина изготовлена из швеллеров и снаружи обшита листовой сталью. Внутри ее установлен электродвигатель на плите, которая крепится к станине шарнирно на двух кронштейнах.

Плунжерный блок состоит из корпуса, манжетных уплотнений, всасывающих и нагнетательных клапанов и седел клапанов. При работе одной плунжерной пары жидкость поступает к гомогенизирующей головке пульсирующим потоком. Для его выравнивания в гомогенизаторах обычно применяют трехплунжерные насосы, приводимые в действие коленчатым валом, у которого колена смещены на 120 град относительно друг друга.

К плунжерному блоку болтами крепят двухступенчатую плунжерную головку, манометрическую головку и предохранительный клапан, расположенный с противоположной стороны гомогенизирующей головки. Манометрическая головка снабжена дросселирующим устройством, позволяющим уменьшать амплитуду колебаний стрелки манометра во время работы гомогенизатора.

Рис. 3.18.

1 - электродвигатель; 2 - станина с приводом; 3 - кривошипношатунный механизм с системой смазки и охлаждения; 4 - блок плунжерный с гомогенизирующей и манометрической головками и предохранительным клапаном; 5 - манометрическая головка; 6 - гомогенизирующая головка

Кривошипно-шатунный механизм состоит из коленчатого вала, установленного на двух конических роликовых подшипниках, шатунов и ведомого шкива. Шатуны соединены с ползунами шарнирно.

Привод гомогенизатора включает в себя электродвигатель и ременную передачу.

Промышленность выпускает гомогенизаторы различной производительности (табл. 3.2).

Таблица 3.2

Основные технические данные гомогенизаторов для молока и жидких молочных продуктов

Если при гомогенизации необходимо исключить доступ микроорганизмов к обрабатываемому продукту, применяют специальные асептические гомогенизирующие головки. В таких головках в пространство, ограниченное двумя уплотнительными элементами, подается горячий пар под давлением 30...60 кПа. Эта высокотемпературная зона служит барьером, препятствующим попаданию бактерий в цилиндр гомогенизатора.

Гомогенизаторы-пластификаторы по принципу действия и устройству отличаются от гомогенизаторов клапанного типа. Рабочим органом в них служит ротор, который может иметь разное число лопастей - 12, 16 или 24.

Гомогенизатор-пластификатор (рис. 3.19) состоит из станины, корпуса со шнеками, приемного бункера и привода, который позволяет регулировать частоту вращения подающих шнеков (при помощи вариатора) в пределах 0,2. ..0,387 с -1 . Частота вращения ротора с лопастями не регулируется и составляет 11,86 сг 1 .

Рис. 3.19.

  • 1 - ротор; 2 - станина; 3 - корпус; 4 - крепление насадки; 5 - насадка;
  • 6 - замок; 7 - шнековая камера; 8 - бункер; 9 - пульт управления

Принцип работы машины заключается в следующем. Сливочное масло подается в бункер, откуда при помощи двух шнеков, вращающихся в противоположных направлениях, продавливается через ротор и из насадки с диафрагмой выходит в бункер фасовочного аппарата. Для предотвращения налипания масла рабочие органы гомогенизатора смазывают перед началом работы специальным горячим раствором. Производительность гомогенизатора зависит от частоты вращения подающих шнеков и составляет 760... 1520 кг/ч. Мощность привода машины 18,3 кВт.

Гомогенизатор ЯЗ-ОГЗ предназначен для обработки расплавленной сырной массы при производстве плавленых сыров и состоит из следующих частей: основания, корпуса, комплекта гомогенизирующего инструмента, бункера, выгрузного устройства и привода.

Основание служит для крепления на нем составных частей гомогенизатора. В корпусе размещены рабочие узлы и уплотняющие устройства.

Гомогенизирующий инструмент (рис. 3.20) для подачи, измельчения и перемешивания расплавленной сырной массы выполнен в виде подвижных и неподвижных ножей, разделенных распорными кольцами, а также загрузочного лопастного колеса и выгрузного ротора. Специальные пазы в подвижных ножах, выполненные под определенным углом к торцевой поверхности, способствуют перемещению измельчаемого продукта к выгрузному устройству. Вал гомогенизирующего инструмента вращается с частотой 49 с -1 .


Рис. 3.20.

  • 1 - неподвижное кольцо; 2 - подвижное кольцо; 3 - лопастное колесо;
  • 4 - бункер; 5 - подвижный нож; 6 - корпус; 7 - неподвижный нож;
  • 8 - выгрузной ротор; 9 - вал гомогенизатора

Выгрузное устройство в виде двух труб, соединенных между собой при помощи крана, предназначено для отвода гомогенизированной массы в дозатор фасовочного автомата.

Привод состоит из двигателя мощностью 11 кВт, предназначенного для передачи вращения от вала к подвижной части гомогенизирующего инструмента.

Обработка продукта на гомогенизаторе ЯЗ-ОГЗ осуществляется следующим образом. Расплавленная сырная масса периодически или непрерывно подается в бункер гомогенизатора. Под действием разрежения, создаваемого загрузочным лопастным колесом, продукт поступает в гомогенизирующий инструмент, в котором, проходя последовательно через подвижные и неподвижные ножи, гомогенизируется и подается к выгрузному устройству.

Использование гомогенизатора позволяет отказаться от технологической операции процеживания сырной массы для удаления ее нерасплавленных частиц.

Гомогенизатор это устройство для получения гомогенных (однородных) дисперсных систем. Системы могут быть одно- или многофазными, т.е. в дисперсной среде, которой обычно является жидкость, находятся частицы (обычно – нерастворимые) одного или нескольких твердых либо жидких веществ, которые называются дисперсными фазами. Термин «гомогенный» значит, что фазы распределены равномерно, с одинаковой концентрацией в любом произвольно взятом единичном объеме среды. Полученная система должна быть относительно устойчивой. Для этого при гомогенизации, в подавляющем большинстве случаев, проводят диспергирование, то есть, измельчение частиц фазы.

Применение гомогенизаторов в молочной промышленности

Гомогенизатор для молока дробит жировые шарики. Скорость, с которой они всплывают на поверхность, зависит от квадрата их радиуса. Таким образом, после уменьшения в 10 раз, скорость падает в 100 раз. Благодаря этому, продукт не отстаивается, не разделяется на сливки и обрат. Срок его хранения значительно возрастает.

Кроме того, после гомогенизации:

  • При изготовлении маргарина или сливочного масла, в жировой среде равномерно распределяются вода и прочие компоненты. А в майонезах и салатных заправках – жиры в водной среде.
  • Сливки и пастеризованное молоко делаются однородными по цвету, вкусу и жирности.
  • У сгущенных молочных консервов, во время длительного хранения, не выделяется жировая фаза.
  • Кефир, сметана и другие кисломолочные продукты стабилизируются. Консистенция белковых сгустков улучшается. На поверхности не образуется жировая пробка.
  • В сухом цельном молоке уменьшается количество не защищенного белковой оболочкой свободного жира. За счет этого исключается его быстрое окисление под влиянием атмосферного воздуха.
  • У молока с какао или другим наполнителем улучшается вкус, оно становится более вязким. Снижается вероятность выпадения осадка.
  • У восстановленных кисломолочных напитков, сливок и молока нет водянистого привкуса. Естественный вкус становится более насыщенным.

Физические методы процесса и основные типы гомогенизаторов

  • Продавливание через узкую щель. Используются агрегаты клапанного типа, с плунжерными насосами высокого давления. Такие устройства в молочной промышленности - самые распространенные.
  • Механическое перемешивание. Применяются миксеры с ножами или лопаточными венчиками, в том числе, высоко оборотистые. Простейший пример – кофемолка или мясорубка с электроприводом. Сюда же можно отнести роторно-пульсационные аппараты (РПА). Хотя в них действие на комочки фазы более сложное, оно не ограничивается лишь ударными и истирающими нагрузками.
  • Воздействие ультразвуком. Здесь работают УЗ-установки, возбуждающие в дисперсной среде кавитацию, за счет которой фаза измельчается.

Плунжерный гомогенизатор

Устройство

Устройство гомогенизатора показано на рис. 1. Плунжерный цилиндр 1 соединяется с входным патрубком через всасывающий клапан 3, а с камерой высокого давления – через нагнетательный клапан 4. От камеры идет канал к гомогенизирующей головке 5, которая имеет седло 6, клапан 7, пружину 8 и регулировочный винт 11. Для контроля давления, к камере подключен манометр 10. Канал имеет ответвление на предохранительный клапан 9. Плунжер приводится в движение насосом 2.

В укрупненном виде гомогенизирующая головка показана на рис.2. В ней имеется калиброванное отверстие (канал) 1 в седле 5, пружина 2, клапан 4 со стержнем 3 и регулировочный винт 6. Седло и клапан притерты друг к другу.

Клапан имеет плоскую, конусную с небольшим углом или тарельчатую форму рабочей поверхности. В первом случае, на ней могут быть рифли (проточки). Если они есть, то на седле делаются такие же. Это повышает степень дробления фазы.

Встречаются модели, в которых клапан и седло расположены в подшипниках, установленных в неподвижном корпусе. В этом случае они, под напором струи продукта, вращаются в разные стороны.

Поскольку проходящая с большой скоростью жидкость достаточно сильно действует на клапан и седло, то они быстро изнашиваются. Поэтому указанные элементы делают из особо прочных сталей. Кроме того, их форма симметричная. При заметном износе, достаточно перевернуть их на другую сторону, тем самым увеличив срок службы в два раза.

Насос применяется не обязательно плунжерный, можно выбрать винтовой или роторный. Главное, чтобы он создавал высокое давление. Поскольку плунжерный механизм не обеспечивает равномерную подачу, то в гомогенизаторы ставят их по несколько штук, с разнесением начала циклов по времени. Самыми популярными являются трехплунжерные агрегаты. В них на валу колена повернуты на 120 град, чтобы цилиндры работали поочередно. В этом случае коэффициент неравномерности подачи, то есть, отношение ее максимального значения к среднему, равен 1,047.

Близкий к единице показатель значит, что поток, идущий через гомогенизирующую головку, с небольшой погрешностью может считаться стабильным. Таким образом, в процессе гомогенизации клапан находится все время во взвешенном (открытом) положении. Между ним и седлом имеется щель для прохода жидкости. Размер ее тоже можно принимать постоянным, не учитывая незначительного отклонения от среднего уровня. У многих современных аппаратов поток с каждого плунжера идет на «свою» головку. После дробления фазы они соединяются в выходном коллекторе.

Манометр оборудован дросселирующим устройством. Это уменьшает колебания стрелки прибора.

Принцип действия

Принцип работы гомогенизатора следующий. Когда плунжер работает на всасывание (на рисунке – движется влево), молоко поступает в цилиндр 1 через клапан 3. Затем плунжер работает на нагнетание (перемещается вправо) и проталкивает продукт в камеру через клапан 4. После этого жидкость по каналу попадает из камеры в гомогенизирующую головку 5.

Когда клапан находится в нерабочем положении, пружина 8 плотно прижимает его к седлу. Поступающее под давлением молоко приподнимает клапан так, что между ним и седлом образуется небольшая щель. Проходя через нее, жировые шарики измельчаются, продукт гомогенизируется, после чего уходит в выпускной патрубок.

Щель обычно имеет размер не более 0,1 мм. Частицы молока движутся в этой зоне со скоростью около 200 м/с (в нагнетательной камере - всего 9 м/с). Размер жировых комочков уменьшается с 3,5-4,0 мкм до 0,7-0,8 мкм.

Давление, создаваемое плунжерным насосом, очень большое. Поэтому засорение канала в седле может привести к разрушению деталей. Чтобы избежать поломки, ставится предохранительный клапан 9.

Регулируют агрегат винтом 11. Одной из основных характеристик гомогенизации является давление. При затягивании винта, пружина сильнее прижимает клапан к седлу. Из-за этого уменьшается размер щели, так как возрастает гидравлическое сопротивление. Настройку аппарата проводят по показаниям манометра 10.

Согласно инструкции к гомогенизатору, температура молока должна быть в пределах от 50 до 65 град С. Если она окажется ниже этого диапазона, ускорится процесс отстаивания жировых комочков. Если выше – начнут осаждаться сывороточные белки.

Повышение кислотности продукта отрицательно влияет на эффективность процесса, так как в этом случае стабильность белков снижается. Образуются агломераты, дробление жировых комочков затрудняется.

В момент прохождения жидкости через клапанную щель, из-за резкого сужения поперечного сечения канала, наблюдается эффект дросселирования. Скорость потока многократно увеличивается, а давление падает из-за того, что потенциальная энергия преобразуется в кинетическую.

После прохождения молока через головку, какая-то часть раздробленных частиц опять слипается в более крупные конгломераты. Эффективность процесса падает. Для борьбы с этим явлением, используют двухступенчатую гомогенизацию. Устройство показано на рис. 3. Принципиальное отличие от одноступенчатой заключается в наличии двух пар рабочих органов, первой ступени 4 и второй – 12. У каждой есть своя прижимная пружина с регулирующим вентилем 6.

Вторая ступень, вспомогательная, еще более повышает степень дробления фазы. Она предназначена для создания управляемого и постоянного противодавления в головке первой ступени, которая является основной. Это оптимизирует условия процесса. А также для разрушения относительно неустойчивых образований. Давление в ней устанавливается меньшее, чем в первой.

Одноступенчатая гомогенизация предназначена для продуктов с низкой жирностью или высокой вязкостью. Двухступенчатая – при высоком содержании жира либо сухих веществ и малой вязкости. А также в тех случаях, когда надо обеспечить максимально возможное дробление фазы.

Раздельная технология

В молочной промышленности гомогенизация может быть полной или раздельной. В первом случае все имеющееся сырье пропускают через агрегат. Во втором, его сначала сепарируют. Полученные сливки 16-20% жирности гомогенизируют, после чего смешивают с обратом. И отправляют на следующий этап переработки. Этот способ дает значительную экономию энергии.

Механизм процесса диспергирования фазы в аппарате клапанного типа

По Н. В. Барановскому, на основании изучения гидравлических факторов, влияющих на дробление жировых комочков при гомогенизации молока на аппарате клапанного типа, предложена следующая схема процесса (рис. 4).

В точке перехода потока из канала седла в щель, между седлом и клапаном резко снижается площадь сечения потока. А значит, согласно одному из основных законов гидравлики, также быстро возрастает скорость его движения U. Если более конкретно, то U0 на подходе составляет несколько метров в секунду. А U1 на входе в щель – на 2 порядка выше, несколько сотен м/с.

Жировая капля не переходит из зоны малых в зону больших скоростей одномоментно «вся сразу». В поток, двигающийся в щели с огромной скоростью, входит сначала передняя часть шарика. Под действием быстро текущей жидкости, она вытягивается (задняя часть – все еще движется медленно) и отрывается. Оставшийся комок продолжает неторопливо (разумеется, понятие «неторопливо» в данном случае относительное, так как весь цикл прохождения капли сквозь щель занимает 50 микросекунд) продвигаться к границе раздела скоростей, и часть, теперь оказавшаяся передней, вытягивается так же, как и предыдущая, и тоже отрывается. Таким образом, вся жировая капля постепенно разрывается на кусочки, проходя через пограничное сечение. Это происходит при достаточно большой разности скоростей U0 и U1.

Если указанная разность окажется меньше определенного порога, то, перед отрывом частиц, имеет место промежуточный этап – капля сначала растягивается в шнур. Если разность будет еще меньше, то жировой комочек пройдет через границу раздела скоростей без разрушения. Но воздействие большой скорости потока все равно приведет его в неустойчивое состояние, вследствие образования внутренних деформаций. Поэтому, из-за сил поверхностного натяжения и механических ударов струй потока, шарик все равно распадется на более мелкие фракции.

Гомогенизатор для масла


Для получения однородной консистенции сливочного масла или плавленых сыров, используют гомогенизатор пластификатор. В процессе обработки, водная фаза диспергируется и равномерно распределяется по всему объему. В итоге, продукт дольше хранится, его вкусовые качества улучшаются. Кроме того, сокращаются затраты времени на размораживание, при упаковке снижаются потери воды.

Устройство аппарата можно рассмотреть на примере одной из наиболее популярных моделей М6-ОГА (рис. 5). Он состоит из корпуса и станины (рис. 6), приемного бункера, под которым расположены подающие шнеки, и ротора с 12-ю, 16-ю или 24-мя лопастями. В качестве привода используется электродвигатель. Частота вращения шнеков регулируется вариатором. Угловая скорость ротора – постоянна.

Работа гомогенизатора выглядит следующим образом. Сливочное масло большими кусками кладется в бункер. Шнеки вращаются в разных направлениях, если смотреть сверху – один навстречу другому. С их помощью масло продавливается через ротор, после чего, через насадку прямоугольного сечения, выходит в приемный бункер (на рисунке не показан). Чтобы масло не налипало на рабочие органы, их смазывают горячим раствором.Роторно-пульсационный аппарат

В последнее время для обработки молока все чаще используют роторно-пульсационные аппараты (РПА). Такой гомогенизатор по конструкции и принципу действия похож на центробежный насос. Главное отличие – в рабочих органах.

РПА устроен следующим образом. В качестве привода служит электродвигатель. На его удлиненном валу жестко закреплен ротор в виде перфорированного цилиндра. С торца цилиндра, со стороны крышки, может стоять крыльчатка. Перфорация на ней не обязательна. Внутри крышки имеется аналогичный цилиндр, неподвижный, он играет роль статора.

Молоко подается через осевой патрубок на крышке и попадает на крыльчатку. Эта деталь производит первичное дробление фазы и придает рабочей смеси ускорение. Последняя затем проходит сквозь перфорацию подвижного цилиндра, снова частично диспергируется, под действием срезающих и истирающих нагрузок, и оказывается в гомогенизирующей полости между ротором и статором. Здесь, кроме ударных, на жировые шарики действуют еще и другие силы.

В турбулентном потоке, движущемся с большой скоростью (именно такой наблюдается в рабочей зоне РПА), возникают микровихревые течения. Если небольшой сферический водоворот сталкивается с каплей жира, он ее разрушает. Также имеет место гидроакустическое воздействие. Интенсивная кавитация, приводящая к схлопыванию пузырьков воздуха, порождает ударные волны, против которых комочки фазы тоже не могут устоять.

Максимальное воздействие аппарата на частицы достигается в тот момент, когда между ротором и статором возникают резонансные колебания. Чтобы обеспечить данный эффект, надо рассчитать диаметр подвижного цилиндра, скорость его вращения, а также зазор между ним и статором.

После рабочей зоны молоко проходит сквозь отверстия статора и, уже гомогенизированное, выводится через тангенциальный выпускной патрубок, направленный обычно вверх, чтобы проще было подключать трубопроводы для повторной загрузки бункера в рециркуляционной системе.

Для повышения степени дробления, в аппарате может быть несколько пар «ротор-статор» . После установки крышки, они располагаются поочередно. Есть модели, в которых, вместо крыльчатки, ставится перфорированный диск. Гомогенизаторы РПА также могут быть погружными. Опционально агрегат комплектуется следующими приспособлениями:

  • Защита от сухого пуска.
  • Взрывозащищенный двигатель.
  • Корпус с рубашкой нагрева / охлаждения.
  • Регулятор плавного изменения частоты вращения мотора.
  • Загрузочное устройство (шнековый питатель), для вязких, плохо растворимых, неоднородных эмульсий и суспензий или сыпучих компонентов.
  • Разгрузочный узел, для слива в стороннюю емкость при работе по циркуляционной схеме.
  • Торцевое сильфонное уплотнение вала из карбидо-кремниевой керамики – увеличивает срок службы агрегата, даже при работе с жидкостями агрессивными или содержащими абразивные включения.

РПА бывают одно- или трехфазные. Все детали, вступающие в контакт с продуктами питания, сделаны из пищевой нержавеющей стали AISI 304, AISI 316 или их отечественных аналогов. Поскольку диспергированная жидкость выходит из аппарата под давлением, то гомогенизатор РПА одновременно работает как центробежный насос.

Ультразвуковые гомогенизаторы

Устройство (на примере BANDELIN). УЗ гомогенизатор состоит из (на рис. 15 – сверху вниз) ВЧ-генератора, УЗ-преобразователя, «рогов» и зондов (волноводов). ВЧ-генератор включают в бытовую сеть с током частотой 50 или 60 Гц. Он усиливает этот параметр до 20 кГц. УЗ-преобразователь, оборудованный осциллирующей схемой с измерительным пьезоэлектрическим элементом, трансформирует вырабатываемую генератором энергию тока в колебания УЗ волн той же частоты. Генерируемая амплитуда остается постоянной. Ультразвуковая – увеличивается, за счет использования «рогов» специальной формы. В них вставляются зонды, передающие колебания в сосуд с жидкостью. В зависимости от объема рабочей среды, они могут быть плоскими, в виде конусов или «микро», диаметром от 2 до 25 мм.

Отечественная промышленность также выпускает УЗ гомогенизаторы. Из последних моделей можно отметить разработку 2015 года И100-6/840 (рис. 16). Аппарат имеет цифровое управление, импульсный режим, контроль амплитуды и набор зондов.

Принцип действия. Когда УЗ волны проходят через жидкость, они попеременно, 20 000 раз в секунду, создают в ней, то высокое, то низкое давление. Последнее практически равно внутреннему давлению паров жидкости, в результате чего в ней появляются пузырьки, наполненные паром, жидкость закипает. Когда пустоты схлопываются, возникает перепад давлений, образовываются быстротекущие турбулентные микропотоки, разрушающие жировые капли.

Некоторые специалисты считают, что, при УЗ воздействии, комочки диспергируют не от кавитации, а из-за того, что волна, проходя через жировую каплю в разных точках, вызывает различные по величине и направлению ускорения. В результате возникают разнонаправленные силы, старающиеся разорвать шарик.

Гомогенизация – важный этап процесса переработки молока и других продуктов. С ее помощью улучшается структура и увеличивается срок хранения, а вкусовые качества становятся более насыщенными.

Гомогенизация стала стандартным производственным процессом, повсеместно практикуемым в качестве средства удерживания жировой эмульсии от разделения под действием силы тяжести. Голен (Gaulin), который разработал этот процесс в 1899 г., дал ему следующее определение на французском языке:»Fixer la composition des liquides».

Сначала гомогенизация приводит к расщеплению жировых шариков на гораздо более мелкие (см. рис.1). В результате уменьшается образование сливок и может также быть снижена тенденция шариков к слипанию или образованию крупных агломератов. В основном гомогенизированное молоко производится механическим способом. Оно на высокой скорости прогоняется сквозь узкий канал.

Разрушение жировых шариков достигается сочетанием таких факторов, как турбулентность и кавитация. В результате диаметр шариков уменьшается до 1 мкм, и эго сопровождается четырех — шестикратным увеличением площади промежуточной поверхности между жиром и плазмой. В результате перераспределения оболочечного вещества, полностью покрывавшего жировые шарики до их разрушения, вновь образованные шарики имеют недостаточно прочные и толстые оболочки. В состав этих оболочек также входят адсорбированные белки плазмы молока.

Фокс вместе со своими коллегами исследовал жиропротеиновый комплекс, полученный в результате гомогенизации молока. Он доказал, что казеин является протеиновым слагаемым комплекса и что он, возможно, связан с жировой фракцией через полярные силы притяжения. Он также установил, что казеиновые мицеллы активизируются в момент прохождения сквозь клапан гомогенизатора, вызывая предрасположенность к взаимодействию с жировой фазой.

Требования к процессу

Физическое состояние и концентрация жировой фракции во время гомогенизации влияют на размеры жировых шариков. Гомогенизация холодного молока, в котором жир в основном присутствует в затвердевшем состоянии, практически неосуществима. Обработка молока при температуре 30 — 35°С приводит к неполной дисперсии жировой фракции. Гомогенизация по-настоящему эффективна, когда вся жировая фаза находится в жидком состоянии, причем в концентрациях, нормальных для молока. Продукты с повышенной массовой долей жира имеют тенденцию к образованию крупных скоплений жировых шариков, особенно при низкой концентрации протеинов сыворотки на фоне высокого содержания жира. Сливки с жирностью выше 12% не могут быть успешно гомогенизированы при стандартном повышенном давлении, потому что из-за недостатка мембранного материала (казеина) шарики жира слипаются в гроздья. Для достаточно эффективной гомогенизации на один грамм жира должно приходиться 0,2 грамма казеина.

Процессы гомогенизации, проводящиеся под высоким давлением, приводят к образованию маленьких жировых шариков. С ростом температуры гомогенизации возрастает дисперсность жировой фазы — соразмерно с уменьшением вязкости молока при повышенных температурах.

Обычно гомогенизацию проводят при температуре от 55 до 80°С, под давлением от 10 до 25 МПа (100-250 бар), в зависимости от типа обрабатываемого продукта.

Характеристики потока

При прохождении потока по узкому каналу его скорость возрастает (см. рис.2). Скорость будет расти до тех пор, пока статическое давление не снизится до такого уровня, при котором жидкость закипает. Максимальная скорость главным образом зависит от давления на входе. Когда жидкость покидает щель, скорость снижается, а давление начинает расти. Кипение жидкости прекращается, и паровые пузырьки взрываются.

Теории гомогенизации

За годы применения процесса гомогенизации возникло много теорий, объясняющих механизм гомогенизации при высоком
давлении. Две теории, объясняющие дисперсную систему нефть -вода по аналогии с молоком, где диаметр большинства капель составляет меньше 1 мкм, не устарели до настоящего момента.
Они дают объяснение влияния различных параметров на эффективность гомогенизации.

Теория разрушения шариков турбулентными водоворотами («микровихрями») основана на том, что в жидкости, движущейся с высокой скоростью, возникает большое количество турбулентных микропотоков.

Если турбулентный микропоток сталкивается с соразмерной ему каплей, последняя разрушается. Данная теория позволяет предвидеть изменения результатов гомогенизации при изменении применяемого давления. Эта связь была обнаружена во многих исследованиях.

С другой стороны, теория кавитации гласит, что капельки жира разрушаются ударными волнами, возникающими при взрывах паровых пузырьков. Согласно этой теории, гомогенизация происходит при покидании жидкостью щели. Таким образом, противодавление, необходимое для кавитации, имеет в этом случае большую значимость. Это было подтверждено на практике. Однако гомогенизация возможна и без кавитации, но в таком случае она менее эффективна.

Рис.3 Разрушение жировых шариков на первой и второй ступенях гомогенизации.
1 После первой ступени
2 После второй ступени

Одноступенчатая и двухступенчатая гомогенизация

Гомогенизаторы могут быть оснащены одной гомогенизирующей головкой или двумя, последовательно соединенными. Отсюда название: одноступенчатая гомогенизация и двухступенчатая гомогенизация. Обе системы показаны на рис.5 и 6. При одноступенчатой гомогенизации весь перепад давления используется
в единственной ступени. При двухступенчатой гомогенизации суммарное
давление замеряется перед первой ступенью Р 1, и перед второй ступенью Р 2 .

Для достижения оптимальной эффективности гомогенизации обычно используется двухступенчатый вариант. Но желаемые результаты удается получить, если соотношение Р 2: Р 1 равняется примерно 0,2. Одноступенчатый вариант используется для гомогенизации

  • продукции с низкой жирностью,
  • продукции, требующей высокой вязкости (образования определенных агломератов).
  • в продуктах, для которых требуется низкая вязкость
  • для достижения максимальной эффективности гомогенизации (микронизации).

На рис.3 показано образование и разрушение скоплений жировых шариков на второй ступени гомогенизации.

Влияние гомогенизации на структуру и свойства молока

Эффект гомогенизации оказывает положительное воздействие на физическую структуру
и свойства молока и проявляется в следующем:

  • Уменьшение размеров жировых шариков, что предотвращает отстой сливок
  • Более белый и аппетитный цвет
  • Повышенная сопротивляемость окислению жира
  • Улучшенные аромат и вкус
  • Повышенная сохранность кисломолочных продуктов, изготовленных из гомогенизированного молока.

Однако гомогенизации свойственны и определенные недостатки. В их числе:

  • Невозможность сепарирования гомогенизированного молока
  • Несколько повышенная чувствительность к воздействию света — как солнечного, так и от люминесцентных ламп — может привести к возникновению так называемого солнечного привкуса
  • Пониженная термоустойчивость — особенно выражена при испытании первой ступени гомогенизации, гомогенизации обезжиренного молока и в других случаях, способствующих образованию скоплений жировых шариков
  • Непригодность молока для производства полутвердых и твердых сыров, так как сгусток будет плохо отделять сыворотку.

Гомогенизатор

Для обеспечения максимальной эффективности гомогенизации обычно требуются гомогенизаторы высокого давления.

Продукт поступает в насосный блок, где его давление повышается поршневым насосом. Уровень возникшего давления зависит от противодавления, определяемого расстоянием между поршнем и седлом в гомогенизирующей головке. Давление Р 1 всегда означает давление гомогенизации. Р 2 — это противодавление первой ступени гомогенизации или давление на входе во вторую ступень.

Рис.4 Гомогенизатор — это большой насос высокого давления с устройством противодавления.
1 Главный двигатель привода
2 Клиноременная передача
3 Указатель давления
4 Кривошипношатунный механизм
5 Поршень
6 Уплотнение поршня
7 Литой насосный блок из нержавеющей стали
8 Клапаны
9 Гомогенизирующая головка
10 Гидравлическая система


Рис.5 Одноступенчатая гомогенизация. Схема гомогенизирующей головки:
1 Клапан
2 Ударное кольцо
3 Седло
4 Гидравлический привод

Насос высокого давления

Поршневой насос приводится в движение мощным электродвигателем (поз. 1 на рис.4) через коленчатый вал и шатуны — эта передача преобразует вращение двигателя в возвратно-поступательное движение поршней насоса.

Поршни (поз. 5) перемещаются в блоке цилиндров высокого давления.
Они изготовлены из высокопрочного материала. Поршни оснащены двойными уплотнениями. В пространство между уплотнениями подается вода для охлаждения поршней. Туда же может подаваться горячий конденсат для предотвращения повторного обсеменения микроорганизмами продукта при работе гомогенизатора. Также возможно использование горячего конденсата для сохранения условий асептического производства продукта при работе гомогенизатора.

Гомогенизирующая головка

На рис.5 и 6 показаны гомогенизирующая головка и ее гидравлическая система. Поршневой насос поднимает давление молока с 300 кПа (3 бара) на входе до давления гомогенизации 10-15 МПа (100-240 бар), в зависимости от вида продукции. Давление на входе в первую ступень перед механизмом (давление гомогенизации) автоматически поддерживается неизменным. Давление масла на гидравлический поршень и давление гомогенизации на клапан уравновешивают друг друга. Гомогенизатор оборудован одним общим масляным баком, независимо от того, одноступенчатый это вариант или двухступенчатый. Однако в двухступенчатом гомогенизаторе есть две гидросистемы, и у каждой свой насос. Новое давление гомогенизации устанавливается изменением давления масла. Давление гомогенизации указывается на манометре высокого давления.

Процесс гомогенизации происходит на первой ступени. Вторая главным образом служит двум целям:

Созданию постоянного и управляемого противодавления в направлении первой ступени, обеспечивая тем самым оптимальные условия гомогенизации

Разрушению слипшихся гроздьев жировых шариков, образующихся сразу после гомогенизации (см. рис.3).

Обратите внимание, что давление гомогенизации — это давление перед первой ступенью, а не перепад давлений.

Детали гомогенизирующей головки обработаны на прецизионном шлифовальном станке. Ударное кольцо посажено на свое место таким образом, что его внутренняя поверхность перпендикулярна выходу из щели. Седло скошено под углом 5 градусов, чтобы продукт получал контролируемое ускорение, предотвращая таким образом ускоренный износ, неизбежный в ином случае.

Молоко под высоким давлением проникает между седлом и клапаном. Ширина щели составляет примерно 0,1 мм, что в 100 раз превышает диаметр жировых давления, произведенного поршневым насосом, преобразуется в кинетическую энергию. Часть этой энергии после прохождения через механизм снова преобразуется в давление. Другая часть высвобождается в виде тепла; каждые 40 бар падения давления после прохождения через механизм поднимают температуру на 1°С. На гомогенизацию затрачивается менее 1% всей этой энергии, и все же гомогенизация с помощью высокого давления пока остается наиболее эффективным методом из всех имеющихся на сегодняшний день.

Рис.6
Двухступенчатая гомогенизация.
1 Первая ступень
2 Вторая ступень

Эффективность гомогенизации

Цель гомогенизации зависит от способа её применения. Соответственно меняются и методы оценки эффективности.

В соответствии с законом Стокса, растущая скорость частицы определяется по следующей формуле, где: v — скорость

q — ускорение свободного падения p — размер частицы η hp — плотность жидкости η ip — плотность частицы t — вязкость

Или v = константа х р 2

Из формулы следует, что уменьшение размера частицы является эффективным способом уменьшения возрастания скорости. Следовательно, уменьшение размера частиц в молоке приводит к замедлению скорости отстаивания сливок.

Аналитические методы

Аналитические методы определения эффективности гомогенизации можно
разделить на две группы:

I. Определение скорости отстаивания сливок

Самый старый способ определения времени отстаивания сливок — это взять образец, выдержать его определенное время и затем проанализировать содержание жира в различных его слоях. На этом принципе построен метод USPH. Например, образец объемом в один литр выдерживается 48 часов, после чего определяется содержание жира в верхнем слое (100 мл), а также и во всем остальном молоке. Гомогенизация считается удовлетворительной, если массовой доли жира в нижнем слое в 0,9 раза меньше, чем в верхнем слое.

На этом же принципе построен метод NIZO. В соответствии с этим методом образец объемом, скажем, в 25 мл подвергается центрифугированию в течение 30 минут на скорости 1000 об/мин при температуре 40°С и радиусе 250 мм. После этого жирность 20 мл нижнего слоя делится на жирность всего образца и полученный результат умножается на 100. Это соотношение называется значением NIZO. Для пастеризованного молока оно обычно составляет 50-80%.

II. Фракционный анализ

Распределение размеров частиц или капель в образце можно определить хорошо разработанным методом с применением установки лазерной дифракции (см. рис.7), которая посылает лазерный луч в образец, находящийся в кювете. Степень рассеивания света будет находиться в зависимости от размеров и количества частиц, содержащихся в исследуемом молоке.

Результат приведен в виде графиков гранулометрического состава. Процент массовой доли жира представлен как функция размера частицы (размер жирового шарика). На рис.8 показаны три типовых графика распределения размеров жировых шариков. Обратите внимание на то, что при повышении давления гомогенизации график смещается влево.

Расход энергии и его влияние на температуру

Подводимая электрическая мощность, необходимая для гомогенизации, выражается следующей формулой:

Гомогенизатор в технологической линии

Обычно гомогенизатор устанавливается в начале линии, то есть до секции окончательного нагрева в теплообменнике. В большинстве пастеризационных установок по производству питьевого молока для потребительского рынка гомогенизатор стоит после первой регенеративной секции.

При производстве стерилизованного молока гомогенизатор обычно помещается в начале процесса высокотемпературной обработки, протекающей в системе с косвенным нагревом продукта, и всегда в конце процесса, проходящего в системе с прямым нагревом продукта, т.е. в асептической части установки после участка стерилизации продукта. В таком случае используется асептический вариант гомогенизатора, оснащенный специальными поршневыми уплотнениями, прокладками, стерильным конденсатором и специальными асептическими демпферами.

Асептический гомогенизатор устанавливается после секции стерилизации установок с прямым обогревом продукта в случаях производства молочных продуктов с массовой долей жира более 6 10% и/или с повышенным содержанием белка. Дело в том, что при очень высоких температурах обработки в молоке с высоким содержанием жира и/или протеинов образуются скопления жировых шариков и мицелл казеина. Расположенный после секции стерилизации асептический гомогенизатор разрушает эти агломерированные частицы.

Полная гомогенизация

Полная гомогенизация — наиболее распространенный способ гомогенизации питьевого молока и молока, предназначенного для производства кисломолочных продуктов. Жирность молока, а иногда и содержание
сухого обезжиренного остатка (при производстве йогурта, например) нормализуются до гомогенизации.

Раздельная гомогенизация

Раздельная гомогенизация означает, что основная часть обезжиренного молока ей не подвергается. Гомогенизируются сливки и небольшое количество обезжиренного молока. Этот способ гомогенизации обычно используется для пастеризованного питьевого молока. Основное достоинство раздельной гомогенизации — ее относительная экономичность. Общий расход энергии снижается примерно до 65% вследствие меньшего количества молока, проходящего через гомогенизатор.

Поскольку наибольшая эффективность гомогенизации может быть достигнута в случае, если в молоке содержится не менее 0,2 г казеина на 1 г жира, рекомендуемая максимальная жирность составляет 12%. Часовая производительность установки, в которой проводится раздельная гомогенизация, может быть определена по далее приведенной формуле.

Производство пастеризованною нормализованного молока (Q sm) в час составит приблизительно 9690 л. Если мы подставим эту цифру в формулу 2, то получим,
что часовая производительность гомогенизатора равняется примерно 2900 л.,
то есть около трети его полной производительности.

Схема потоков в установке для частично гомогенизированного молока приведена на рис.10.

Влияние гомогенизированных молочных продуктов на организм человека

В начале 1970-х годов американский ученый К. Остер (К. Oster) выступил с гипотезой о том, что гомогенизация молока позволяет ферменту ксантиноксидаза проникать через кишечник в кровеносную систему. (Оксидаза — это фермент, который катализирует присоединение кислорода к субстрату вещества или отщепление от него водорода.) По утверждению Остера, оксидаза ксантина способствует процессу повреждения кровеносных сосудов и ведет к атеросклерозу.

Эта гипотеза была отвергнута учеными на том основании, что человеческий организм сам вырабатывает в тысячи раз большие количества этого фермента, чем теоретически могло бы привнести в него гомогенизированное молоко.

Итак, никакого вреда от гомогенизации молока быть не может. С точки зрения питательности гомогенизация никаких особых изменений не привносит, за исключением, пожалуй, того, что в гомогенизированных продуктах жир и протеин расщепляются быстрее и легче.

Тем не менее Остер прав в том, что процессы окисления могут приносить вред человеческому организму и что диета важна для здоровья.