Понять Вселенную: что такое квант и почему его так любят экстрасенсы. Квантовая вселенная читать онлайн Кванты вселенной

Брайан Кокс, Джефф Форшоу

Квантовая вселенная. Как устроено то, что мы не можем увидеть

Научные редакторы Вячеслав Марача и Михаил Павлов


Издано с разрешения Apollo’s Children Ltd and Jeff Forshow и литературного агентства Diane Banks Associates Ltd.


Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».


© Brian Cox and Jeff Forshaw, 2011

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016

* * *

1. Что-то странное грядет

Квант. Это слово одновременно взывает к чувствам, сбивает с толку и завораживает. В зависимости от точки зрения это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться с неотвратимой странностью субатомной сферы. Для физика квантовая механика – одна из трех великих опор, на которых покоится понимание природы (две другие – это общая и специальная теории относительности Эйнштейна). Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала с толку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности. Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий. В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы. Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.

Это не только впечатляюще, но и удивительно, и, если бы построение моделей было единственной заботой квантовой теории, вы могли бы с полным правом спросить, в чем же вообще проблема. Наука, разумеется, не обязана быть полезной, но многие технологические и общественные изменения, совершившие революцию в нашей жизни, вышли из фундаментальных исследований, проводимых современными учеными, которые руководствуются лишь желанием лучше понять окружающий мир. Благодаря этим, вызванным только любопытством, открытиям во всех отраслях науки мы имеем увеличенную продолжительность жизни, международные авиаперевозки, свободу от необходимости заниматься сельским хозяйством ради собственного выживания, а также широкую, вдохновляющую и открывающую глаза картину нашего места в бесконечном звездном море. Но все это в каком-то смысле побочные результаты. Мы исследуем из любопытства, а не потому, что хотим добиться лучшего понимания реальности или разработать более эффективные безделушки.

Квантовая теория – возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Она полезна, потому что понимание поведения малейших кирпичиков мироздания укрепляет понимание всего остального. Она кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Несмотря на всю эту сложность, мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

Итак, чем больше мы узнаём об элементарной природе мироздания, тем проще оно нам кажется. Постепенно мы придем к пониманию всех законов и того, как эти маленькие кирпичики взаимодействуют, формируя мир. Но как бы мы ни увлекались простотой, лежащей в основе Вселенной, нужно обязательно помнить: хотя основные правила игры просты, их последствия не всегда легко вычислить. Наш повседневный опыт познания мира определяется отношениями многих миллиардов атомов, и пытаться вывести принципы поведения людей, животных и растений из нюансов поведения этих атомов было бы просто глупо. Признав это, мы не принижаем его важности: за всеми явлениями в итоге скрывается квантовая физика микроскопических частиц.

Представьте мир вокруг нас. Вы держите в руках книгу, сделанную из бумаги – перемолотой древесной массы. Деревья – это машины, способные получать атомы и молекулы, расщеплять их и реорганизовывать в колонии, состоящие из миллиардов отдельных частей. Они делают это благодаря молекуле, известной под названием хлорофилл и состоящей из ста с лишним атомов углерода, водорода и кислорода, которые имеют изогнутую особым образом форму и скреплены еще с некоторым количеством атомов магния и водорода. Такое соединение частиц способно улавливать свет, пролетевший 150 000 000 км от нашей звезды – ядерного очага объемом в миллион таких планет, как Земля, – и переправлять эту энергию вглубь клеток, где с ее помощью создаются новые молекулы из двуокиси углерода и воды и выделяется дающий нам жизнь кислород.

Именно эти молекулярные цепи формируют суперструктуру, объединяющую и деревья, и бумагу в этой книге, и все живое. Вы способны читать книгу и понимать слова, потому что у вас есть глаза и они могут превращать рассеянный свет от страниц в электрические импульсы, интерпретируемые мозгом – самой сложной структурой Вселенной, о которой мы вообще знаем. Мы обнаружили, что все вещи в мире – не более чем скопища атомов, а широчайшее многообразие атомов состоит всего из трех частиц – электронов, протонов и нейтронов. Мы знаем также, что сами протоны и нейтроны состоят из более мелких сущностей, именуемых кварками, и на них уже все заканчивается – по крайней мере, так мы думаем сейчас. Основанием для всего этого служит квантовая теория.

Таким образом, картину Вселенной, в которой обитаем мы, современная физика рисует с исключительной простотой; элегантные явления происходят где-то там, где их нельзя увидеть, порождая разнообразие макромира. Возможно, это самое выдающееся достижение современной науки – сведение невероятной сложности мира, включая и самих людей, к описанию поведения горстки мельчайших субатомных частиц и четырех сил, действующих между ними. Лучшие описания трех из четырех этих сил – сильного и слабого ядерных взаимодействий, существующих внутри атомного ядра, и электромагнитного взаимодействия, которое склеивает атомы и молекулы, – предоставляет квантовая теория. Лишь сила тяжести – самая слабая, но, возможно, самая знакомая нам сила из всех – в настоящий момент не имеет удовлетворительного квантового описания.

Стоит признать, что квантовая теория имеет несколько странную репутацию, и ее именем прикрывается множество настоящей ахинеи. Коты могут быть одновременно живыми и мертвыми; частицы находятся в двух местах одновременно; Гейзенберг утверждает, что все неопределенно. Все это действительно верно, но выводы, которые часто из этого следуют – раз в микромире происходит нечто странное, то мы окутаны дымкой тумана, – точно неверны. Экстрасенсорное восприятие, мистические исцеления, вибрирующие браслеты, которые защищают от радиации, и черт знает что еще регулярно прокрадывается в пантеон возможного под личиной слова «квант». Эту чепуху порождают неумение ясно мыслить, самообман, подлинное или притворное недопонимание либо какая-то особенно неудачная комбинация всего вышеперечисленного. Квантовая теория точно описывает мир с помощью математических законов, настолько же конкретных, как и те, что использовали Ньютон или Галилей. Вот почему мы можем с невероятной точностью рассчитать магнитное поле электрона. Квантовая теория предлагает такое описание природы, которое, как мы узнаем, имеет огромную предсказательную и объяснительную силу и распространяется на множество явлений – от кремниевых микросхем до звезд.

Цель этой книги – сорвать покровы таинственности с квантовой теории – теоретической конструкции, в которой путаются слишком многие, включая даже самих первопроходцев в этой отрасли. Мы намерены использовать современную перспективу, пользуясь наработанными за век уроками непредусмотрительности и развития теории. Однако на старте путешествия мы перенесемся в начало XX века и исследуем некоторые проблемы, заставившие физиков радикально отклониться от того, что ранее считалось магистральным направлением науки.

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой - фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены. Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.

Что-то странное грядет.
Квант. Это слово одновременно взывает к чувствам, сбивает с толку и завораживает. В зависимости от точки зрения это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться с неотвратимой странностью субатомной сферы. Для физика квантовая механика - одна из трех великих опор, на которых покоится понимание природы (две другие - это общая и специальная теории относительности Эйнштейна). Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала с толку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности. Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий. В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы. Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.
Это не только впечатляюще, но и удивительно, и, если бы построение моделей было единственной заботой квантовой теории, вы могли бы с полным правом спросить, в чем же вообще проблема. Наука, разумеется, не обязана быть полезной, но многие техно-логические и общественные изменения, совершившие революцию в нашей жизни, вышли из фундаментальных исследований, проводимых современными учеными, которые руководствуются лишь желанием лучше понять окружающий мир. Благодаря этим, вызванным только любопытством, открытиям во всех отраслях науки мы имеем увеличенную продолжительность жизни, международные авиаперевозки, свободу от необходимости заниматься сельским хозяйством ради собственного выживания, а также широкую, вдохновляющую и открывающую глаза картину нашего места в бесконечном звездном море. Но все это в каком-то смысле побочные результаты. Мы исследуем из любопытства, а не потому, что хотим добиться лучшего понимания реальности или разработать более эффективные безделушки.

Содержание
Что-то странное грядет
В двух местах одновременно
Что такое частица?
Все, что может случиться, действительно случается
Движение как иллюзия
Музыка атомов
Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю)
Взаимозависимость
Современный мир
Взаимодействие
Пустое пространство не такое уж пустое Эпилог: смерть звезд
Для дальнейшего чтения.

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

Научные редакторы Вячеслав Марача и Михаил Павлов

Издано с разрешения Apollo’s Children Ltd and Jeff Forshow и литературного агентства Diane Banks Associates Ltd.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».

© Brian Cox and Jeff Forshaw, 2011

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016

* * *

1. Что-то странное грядет

Квант. Это слово одновременно взывает к чувствам, сбивает с толку и завораживает. В зависимости от точки зрения это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться с неотвратимой странностью субатомной сферы. Для физика квантовая механика – одна из трех великих опор, на которых покоится понимание природы (две другие – это общая и специальная теории относительности Эйнштейна). Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала с толку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности. Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий. В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы. Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.

Это не только впечатляюще, но и удивительно, и, если бы построение моделей было единственной заботой квантовой теории, вы могли бы с полным правом спросить, в чем же вообще проблема. Наука, разумеется, не обязана быть полезной, но многие технологические и общественные изменения, совершившие революцию в нашей жизни, вышли из фундаментальных исследований, проводимых современными учеными, которые руководствуются лишь желанием лучше понять окружающий мир. Благодаря этим, вызванным только любопытством, открытиям во всех отраслях науки мы имеем увеличенную продолжительность жизни, международные авиаперевозки, свободу от необходимости заниматься сельским хозяйством ради собственного выживания, а также широкую, вдохновляющую и открывающую глаза картину нашего места в бесконечном звездном море. Но все это в каком-то смысле побочные результаты. Мы исследуем из любопытства, а не потому, что хотим добиться лучшего понимания реальности или разработать более эффективные безделушки.

Квантовая теория – возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Она полезна, потому что понимание поведения малейших кирпичиков мироздания укрепляет понимание всего остального. Она кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Несмотря на всю эту сложность, мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

Итак, чем больше мы узнаём об элементарной природе мироздания, тем проще оно нам кажется. Постепенно мы придем к пониманию всех законов и того, как эти маленькие кирпичики взаимодействуют, формируя мир. Но как бы мы ни увлекались простотой, лежащей в основе Вселенной, нужно обязательно помнить: хотя основные правила игры просты, их последствия не всегда легко вычислить. Наш повседневный опыт познания мира определяется отношениями многих миллиардов атомов, и пытаться вывести принципы поведения людей, животных и растений из нюансов поведения этих атомов было бы просто глупо. Признав это, мы не принижаем его важности: за всеми явлениями в итоге скрывается квантовая физика микроскопических частиц.

Представьте мир вокруг нас. Вы держите в руках книгу, сделанную из бумаги – перемолотой древесной массы . Деревья – это машины, способные получать атомы и молекулы, расщеплять их и реорганизовывать в колонии, состоящие из миллиардов отдельных частей. Они делают это благодаря молекуле, известной под названием хлорофилл и состоящей из ста с лишним атомов углерода, водорода и кислорода, которые имеют изогнутую особым образом форму и скреплены еще с некоторым количеством атомов магния и водорода. Такое соединение частиц способно улавливать свет, пролетевший 150 000 000 км от нашей звезды – ядерного очага объемом в миллион таких планет, как Земля, – и переправлять эту энергию вглубь клеток, где с ее помощью создаются новые молекулы из двуокиси углерода и воды и выделяется дающий нам жизнь кислород.

Именно эти молекулярные цепи формируют суперструктуру, объединяющую и деревья, и бумагу в этой книге, и все живое. Вы способны читать книгу и понимать слова, потому что у вас есть глаза и они могут превращать рассеянный свет от страниц в электрические импульсы, интерпретируемые мозгом – самой сложной структурой Вселенной, о которой мы вообще знаем. Мы обнаружили, что все вещи в мире – не более чем скопища атомов, а широчайшее многообразие атомов состоит всего из трех частиц – электронов, протонов и нейтронов. Мы знаем также, что сами протоны и нейтроны состоят из более мелких сущностей, именуемых кварками, и на них уже все заканчивается – по крайней мере, так мы думаем сейчас. Основанием для всего этого служит квантовая теория.

Таким образом, картину Вселенной, в которой обитаем мы, современная физика рисует с исключительной простотой; элегантные явления происходят где-то там, где их нельзя увидеть, порождая разнообразие макромира. Возможно, это самое выдающееся достижение современной науки – сведение невероятной сложности мира, включая и самих людей, к описанию поведения горстки мельчайших субатомных частиц и четырех сил, действующих между ними. Лучшие описания трех из четырех этих сил – сильного и слабого ядерных взаимодействий, существующих внутри атомного ядра, и электромагнитного взаимодействия, которое склеивает атомы и молекулы, – предоставляет квантовая теория. Лишь сила тяжести – самая слабая, но, возможно, самая знакомая нам сила из всех – в настоящий момент не имеет удовлетворительного квантового описания.

Стоит признать, что квантовая теория имеет несколько странную репутацию, и ее именем прикрывается множество настоящей ахинеи. Коты могут быть одновременно живыми и мертвыми; частицы находятся в двух местах одновременно; Гейзенберг утверждает, что все неопределенно. Все это действительно верно, но выводы, которые часто из этого следуют – раз в микромире происходит нечто странное, то мы окутаны дымкой тумана, – точно неверны. Экстрасенсорное восприятие, мистические исцеления, вибрирующие браслеты, которые защищают от радиации, и черт знает что еще регулярно прокрадывается в пантеон возможного под личиной слова «квант». Эту чепуху порождают неумение ясно мыслить, самообман, подлинное или притворное недопонимание либо какая-то особенно неудачная комбинация всего вышеперечисленного. Квантовая теория точно описывает мир с помощью математических законов, настолько же конкретных, как и те, что использовали Ньютон или Галилей. Вот почему мы можем с невероятной точностью рассчитать магнитное поле электрона. Квантовая теория предлагает такое описание природы, которое, как мы узнаем, имеет огромную предсказательную и объяснительную силу и распространяется на множество явлений – от кремниевых микросхем до звезд.

Цель этой книги – сорвать покровы таинственности с квантовой теории – теоретической конструкции, в которой путаются слишком многие, включая даже самих первопроходцев в этой отрасли. Мы намерены использовать современную перспективу, пользуясь наработанными за век уроками непредусмотрительности и развития теории. Однако на старте путешествия мы перенесемся в начало XX века и исследуем некоторые проблемы, заставившие физиков радикально отклониться от того, что ранее считалось магистральным направлением науки.

Как часто бывает, появление квантовой теории спровоцировали открытия природных явлений, которые нельзя было описать научными парадигмами того времени. Для квантовой теории таких открытий было много, притом разнообразного характера. Ряд необъяснимых результатов порождал ажиотаж и смятение и в итоге вызвал период экспериментальных и теоретических инноваций, который действительно заслуживает расхожего определения «золотой век». Имена главных героев навсегда укоренились в сознании любого студента-физика и чаще других упоминаются в университетских курсах и по сей день: Резерфорд, Бор, Планк, Эйнштейн, Паули, Гейзенберг, Шрёдингер, Дирак. Возможно, в истории больше не случится периода, когда столько имен будут ассоциироваться с величием науки при движении к единой цели – созданию новой теории атомов и сил, управляющих физическим миром. В 1924 году, оглядываясь на предшествующие десятилетия квантовой теории, Эрнест Резерфорд, физик новозеландского происхождения, открывший атомное ядро, писал: «1896 год… ознаменовал начало того, что было довольно точно названо героическим веком физической науки. Никогда до этого в истории физики не наблюдалось такого периода лихорадочной активности, в течение которого одни фундаментально значимые открытия с бешеной скоростью сменяли другие».

Но прежде чем переместиться в Париж XIX века, к рождению квантовой теории, давайте рассмотрим само слово «квант». Этот термин появился в физике в 1900 году благодаря работам Макса Планка. Он пытался теоретически описать излучение, испускаемое нагретыми телами, – так называемое «излучение абсолютно черного тела». Кстати, ученого наняла для этой цели компания, занимавшаяся электрическим освещением: так двери Вселенной порой открываются по самым прозаическим причинам. Гениальные прозрения Планка мы обсудим в этой книге позже, а для введения достаточно сказать: он выяснил, что свойства излучения абсолютно черного тела можно объяснить, только если предположить, что свет испускается небольшими порциями энергии, которые он и назвал квантами. Само это слово означает «пакеты», или «дискретные». Изначально он считал, что это лишь математическая уловка, но вышедшая в 1905 году работа Альберта Эйнштейна о фотоэлектрическом эффекте поддержала квантовую гипотезу. Результаты были убедительными, потому что небольшие порции энергии могли быть синонимичны частицам.

Идея того, что свет состоит из потока маленьких пулек, имеет долгую и славную историю, начавшуюся с Исаака Ньютона и рождения современной физики. Однако в 1864 году шотландский физик Джеймс Кларк Максвелл, казалось, окончательно рассеял все существовавшие сомнения в ряде работ, которые Альберт Эйнштейн позднее охарактеризовал как «самые глубокие и плодотворные из всех, что знала физика со времен Ньютона». Максвелл показал, что свет – это электромагнитная волна, распространяющаяся в пространстве, так что идея света как волны имела безукоризненное и, казалось бы, неоспоримое происхождение. Однако в серии экспериментов, которые Артур Комптон и его коллеги провели в Университете Вашингтона в Сент-Луисе, им удалось отделить световые кванты от электронов. Те и другие вели себя скорее как бильярдные шары, что явно подтвердило: теоретические предположения Планка имели прочное основание в реальном мире. В 1926 году световые кванты получили название фотонов. Свидетельство было неопровержимым: свет ведет себя одновременно как волна и как частица. Это означало конец классической физики – и завершение периода становления квантовой теории.

2. В двух местах одновременно

Эрнест Резерфорд называл началом квантовой революции 1896 год, потому что именно тогда Анри Беккерель в своей парижской лаборатории открыл радиоактивность. Беккерель пытался с помощью соединения урана получить рентгеновские лучи, которые буквально за несколько месяцев до этого открыл в Вюрцбурге Вильгельм Рентген. Вместо этого оказалось, что соединения урана испускают les rayons uraniques , которые способны засвечивать фотографические пластины, даже если те завернуты в толстый слой бумаги, через который не проникает свет. Важность лучей Беккереля великий ученый Анри Пуанкаре подчеркнул в своей статье еще в 1897 году. Он прозорливо писал об открытии: «…уже сегодня можно считать, что оно дает доступ в совершенно новый мир, о существовании которого мы даже не подозревали». В радиоактивном распаде, объяснявшем открытый эффект, самым загадочным было то, что лучи, казалось, испускаются самопроизвольно и непредсказуемо, без какого-либо внешнего воздействия.

В 1900 году Резерфорд писал об этом: «Все атомы, сформировавшиеся в одно и то же время, должны существовать в течение определенного интервала. Это, однако, противоречит наблюдаемым законам трансформации, согласно которым жизнь атома может иметь любую продолжительность – от нуля до бесконечности». Такое хаотическое поведение элементов микромира стало шоком, потому что до того наука была полностью детерминистской. Если в определенный момент вы знали все, что возможно знать о каком-либо предмете, то считалось, что вы сможете с уверенностью предсказать будущее этого предмета. Отмена этого вида предсказательности – ключевая черта квантовой теории, имеющей дело с возможностью, а не с уверенностью, и не потому, что нам не хватает абсолютного знания, но потому, что некоторые аспекты природы, по сути, управляются законами случая. Поэтому сегодня мы понимаем, что просто невозможно предсказать, когда же именно конкретный атом постигнет распад. Радиоактивный распад – это первая встреча науки с игрой природы в кости, поэтому он много лет смущал умы физиков.

Конечно, много интересного происходило и в самих атомах, хотя их внутренняя структура была в то время совершенно неизвестной. Ключевое открытие совершил Резерфорд в 1911 году. Он с помощью радиоактивного источника бомбардировал тончайший золотой лист так называемыми альфа-частицами (сейчас мы знаем, что это ядра атомов гелия). Резерфорд вместе с помощниками Гансом Гейгером и Эрнестом Марсденом, к своему немалому удивлению, обнаружил, что примерно одна из 8000 альфа-частиц не пролетает через золотой лист, как ожидалось, а отскакивает прямо назад. Впоследствии Резерфорд описывал этот момент с характерной образностью: «Это было, пожалуй, самое невероятное событие, которое случалось в моей жизни. Оно было настолько же невероятно, как если бы вы выстрелили из пятнадцатидюймовой пушки в кусок туалетной бумаги, а ядро отскочило бы и поразило вас». Резерфорда все считали харизматичным и прямолинейным человеком: однажды он назвал самодовольного чиновника евклидовой точкой: «У него есть положение, но нет величины».

Резерфорд посчитал, что его экспериментальные результаты можно объяснить только тем, что атом состоит из очень маленького ядра и вращающихся вокруг него по орбитам электронов. В то время он, возможно, имел в виду примерно ту же схему, по которой планеты вращаются по орбитам вокруг Солнца. Ядро имеет почти всю массу атома, почему и способно останавливать свои «15-дюймовые» альфа-частицы и отражать их. У водорода, простейшего элемента, ядро состоит из единственного протона радиусом около 1,75 × 10 –15 м. Если вы не знакомы с этой записью, переведем: 0,000 000 000 000 001 75 м, или примерно 2 тысячемиллионмиллионных метра.

Насколько мы можем судить сейчас, одиночный электрон похож на того самодовольного чиновника по Резерфорду, то есть на точку, и вращается по орбите вокруг ядра атома водорода по радиусу примерно в 100 000 раз больше диаметра ядра.

Ядро имеет положительный электрический заряд, а электрон – отрицательный, и это значит, что между ними есть сила притяжения, которая аналогична силе гравитации, удерживающей Землю на солнечной орбите. Это, в свою очередь, означает, что атомы – это в основном пустое пространство. Если представить себе атомное ядро размером с теннисный мяч, то электрон будет меньше пылинки, летящей за километр от этого мяча. Такие цифры весьма удивляют, потому что твердая материя явно не кажется нам такой уж пустой.

Резерфордовские атомные ядра поставили перед физиками того времени ряд проблем. Например, было хорошо известно, что электрон должен терять энергию при движении по орбите вокруг ядра, поскольку все объекты с электрическим зарядом отдают энергию, двигаясь по искривленным траекториям. Эта идея лежит в основе работы радиопередатчиков: электроны колеблются, в результате чего создаются электромагнитные радиоволны. Генрих Герц изобрел радиопередатчик в 1887 году, и ко времени открытия Резерфордом атомного ядра уже существовала коммерческая радиостанция, отправлявшая сообщения через Атлантический океан – из Ирландии в Канаду. Таким образом, уже никто не удивлялся теории вращающихся по орбите зарядов и излучения радиоволн, но это смущало тех, кто пытался объяснить, как же электроны остаются на орбите вокруг ядра.

Столь же необъяснимый феномен представлял собой свет, который испускали разогреваемые атомы. Еще в 1853 году шведский ученый Андерс Ангстрем пропустил искру через трубку, наполненную водородом, и проанализировал полученный свет. Можно было предположить, что газ будет светиться всеми цветами радуги; в конце концов, что такое Солнце, как не светящийся газовый шар? Вместо этого Ангстрем обнаружил, что водород светится тремя отчетливыми цветами: красным, сине-зеленым и фиолетовым, давая три чистые узкие дуги, как у радуги. Вскоре было выявлено, что так ведут себя все химические элементы. У каждого из них есть уникальный цветовой штрихкод. К тому времени как Резерфорд выступил по поводу атомного ядра, ученый Генрих Кайзер завершил работу над шеститомным справочником из 5000 страниц, озаглавленным Handbuch der Spectroscopie («Справочник по спектроскопии»): он описывал все цветные светящиеся линии известных элементов. Вопрос, конечно, зачем? И не только «Зачем, профессор Кайзер?» (наверное, за обедом над его фамилией нередко шутили), но и «Почему так много цветных линий?». Более 60 лет наука, получившая название спектроскопии, была эмпирическим триумфом и теоретическим провалом.

В марте 1912 года датский физик Нильс Бор, очарованный проблемой строения атома, отправился в Манчестер для встречи с Резерфордом. Позже он отмечал, что попытки расшифровать внутреннее строение атома по данным спектроскопии были чем-то сродни выведению базовых постулатов биологии из раскраски крыла бабочки. Атом Резерфорда с его моделью в духе Солнечной системы дал Бору необходимую подсказку, и в 1913 году он уже опубликовал первую квантовую теорию строения атома. У этой гипотезы, конечно, были свои проблемы, но она содержала несколько важнейших идей, подстегнувших развитие современной квантовой теории. Бор заключил, что электроны могут занимать лишь определенные орбиты вокруг ядра, а орбитой с самой низкой энергией будет ближайшая. Он утверждал также, что электроны способны перепрыгивать с орбиты на орбиту. Они переходят на более отдаленную орбиту, когда получают энергию (например, от искры в трубке), а затем продвигаются ближе к центру, одновременно излучая свет. Цвет этого излучения непосредственно определяется разностью энергий электрона на этих двух орбитах. Рис. 2.1 иллюстрирует основную идею; стрелка показывает, как электрон перепрыгивает с третьего энергетического уровня на второй, испуская свет (представленный волнистой линией). В модели Бора электрон может двигаться вокруг протона (ядра атома водорода) лишь по одной из особых, «квантованных» орбит; движение по спирали просто запрещено. Таким образом, модель Бора позволила ему вычислить длины волн (то есть цвета) света, который наблюдался Ангстремом: они соответствовали прыжку электрона с пятой орбиты на вторую (фиолетовый цвет), с четвертой орбиты на вторую (сине-зеленый цвет) и с третьей на вторую (красный цвет). Модель Бора к тому же корректно предсказывала существование света, который должен испускаться при переходе электрона на первую орбиту. Этот свет – ультрафиолетовая часть спектра, невидимая человеческому глазу. Поэтому не видел ее и Ангстрем. Однако в 1906 году ее зафиксировал гарвардский физик Теодор Лайман, и эти данные замечательно описывались моделью Бора.

Рис. 2.1. Модель атома Бора, иллюстрирующая испускание фотона (волнистая линия) в результате перехода электрона с одной орбиты на другую (обозначен стрелкой)


Хотя Бор не сумел распространить свою модель дальше атома водорода, выдвинутые идеи можно было применить и к другим атомам. Например, если предположить, что у атомов каждого элемента набор орбит уникален, они будут испускать световые лучи лишь определенного цвета. Таким образом, эти цвета служат своего рода «отпечатками пальцев» атома, и астрономы, разумеется, немедленно воспользовались уникальностью спектральных линий атомов для определения физического состава звезд.

Модель Бора – неплохое начало, но всем была ясна ее недостаточность: например, почему электроны не могут двигаться по спирали, когда известно, что они должны терять энергию, испуская электромагнитные волны (идея, получившая реальное подтверждение с появлением радио)? И почему орбиты электрона изначально квантуются? И как насчет более тяжелых, чем водород, элементов: что делать для понимания их строения?

Но какой бы несовершенной ни казалась теория Бора, это был критически важный шаг и пример того, как порой учеными достигается прогресс. Нет никакой причины складывать оружие перед лицом озадачивающих и порой ставящих в тупик фактов. В подобных случаях ученые часто делают так называемый анзац – прикидку, или, если угодно, правдоподобное допущение, а затем переходят к вычислению его последствий. Если предположение работает, то есть получающаяся теория согласуется с экспериментальными данными, то можно с большей уверенностью вернуться к изначальной гипотезе и пытаться более детально в ней разобраться. Анзац Бора 13 лет оставался успешным, но не до конца объясненным.

Мы вернемся к истории этих ранних квантовых идей на последующих страницах книги, но сейчас перед нами лишь множество странных результатов и вопросы с неполными ответами – как и перед основоположниками квантовой теории. Если резюмировать, то Эйнштейн, следуя за Планком, предположил, что свет состоит из частиц, но Максвелл уже показал, что свет ведет себя как волна. Резерфорд и Бор прокладывали путь к пониманию строения атома, но поведение электрона внутри атома не согласовывалось ни с одной из известных в то время теорий. А разнообразные явления, носящие общее название радиоактивности, при которой атомы спонтанно делятся на части по невыясненным причинам, оставались загадкой – во многом потому, что вносили в физику волнующий элемент случайности. Сомнений не оставалось: в субатомном мире грядет что-то странное.

Совершение первого шага к общему, согласованному ответу на эти вопросы большинство приписывают немецкому физику Вернеру Гейзенбергу. То, что он сделал, стало совершенно новым подходом к теории материи и физических сил. В июле 1925 года Гейзенберг опубликовал статью, в которой рассматривал старые добрые идеи и гипотезы, в том числе модель атома Бора, но под углом зрения совершенно нового подхода к физике. Он начал так: «В этой работе делается попытка получить основы квантовой теоретической механики, которые базируются исключительно на соотношениях между принципиально наблюдаемыми величинами». Это важный шаг, потому что Гейзенберг таким образом подчеркивает: лежащая в основе квантовой теории математика не обязана согласовываться с чем-то уже известным. Задачей квантовой теории должно стать непосредственное предсказание поведения наблюдаемых объектов – например, цвета световых лучей, испускаемых атомами водорода. Нельзя ожидать от нее сколь-либо удовлетворительного мысленного представления внутреннего механизма поведения атома, потому что это и не нужно, и, может быть, даже нереально. Одним ударом Гейзенберг развеял идею о том, что действия природы непременно согласуются со здравым смыслом. Это не значит, что теория микромира не может согласовываться с нашим повседневным опытом описания движения крупных объектов – например, самолетов или теннисных мячей. Но нужно быть готовым отбросить заблуждение о том, что мелкие предметы оказываются всего лишь маленькими разновидностями крупных, а именно подобное заблуждение и может выработаться в ходе экспериментальных наблюдений.

Нет никаких сомнений, что квантовая теория – вещь хитрая, и уж тем более несомненно, что чрезвычайно хитер и сам подход Гейзенберга. Нобелевский лауреат Стивен Вайнберг, один из величайших современных физиков, так писал о статье Гейзенберга 1925 года:

«Если для читателя остается тайной то, что делал Гейзенберг, он в этом не одинок. Я несколько раз пытался прочитать статью, которую он написал по возвращении с острова Гельголанд, и, хотя я полагаю, что разбираюсь в квантовой механике, так до конца и не уловил обоснования математических действий автора в этой работе. Физики-теоретики в своих самых успешных трудах часто играют одну из двух ролей: они либо мудрецы, либо волшебники… Обычно не так сложно понять работы физиков-мудрецов, но работы физиков-волшебников порой совершенно непостижимы. В этом смысле статья Гейзенберга 1925 года – настоящее волшебство».

Философия Гейзенберга, впрочем, ничего магического собой не представляет. Она проста, и именно она лежит в основе того подхода, которым мы пользуемся в книге: задача объясняющей природу теории – делать количественные предсказания, которые будут сопоставимы с экспериментальными результатами. Мы не имеем возможности разработать теорию, имеющую какое-то отношение к нашему восприятию мира в целом. К счастью, хотя мы и берем на вооружение философию Гейзенберга, будем следовать более понятному подходу к квантовому миру, разработанному Ричардом Фейнманом.

На последних нескольких страницах этой книги мы неоднократно слишком вольно использовали слово «теория», так что, прежде чем продолжить разрабатывать квантовую теорию, будет полезно подробнее взглянуть на более простую. Хорошая научная теория содержит набор правил, определяющих, что может и чего не может случиться в определенной части мироздания. Теория должна позволять делать предсказания, которые впоследствии пройдут проверку наблюдениями. Если предсказания окажутся ложными, то эта теория неверна и подлежит замене. Если предсказания согласуются с наблюдениями, теория жизнеспособна. Ни одна теория не может считаться «истинной», в том смысле что всегда должна быть возможность ее фальсифицировать, то есть доказать ее ложность. Как писал биолог Томас Гексли, «наука – это упорядоченный здравый смысл, в котором множество прекрасных теорий было убито уродливыми фактами». Любая теория, которая не может быть фальсифицирована, не считается научной; более того, можно даже сказать, что она вообще не содержит никакой достоверной информации. Критерий фальсифицируемости отличает научные теории от обычных мнений. Такое научное понимание термина «теория», кстати, отличается от обиходного употребления, при котором под этим словом часто подразумеваются умозрительные рассуждения. Научные теории могут быть умозрительными, пока они не столкнулись с эмпирическими свидетельствами, но утвердившаяся в науке теория всегда подкреплена большим количеством доказательств. Ученые стараются разрабатывать теории, призванные объяснить как можно больше явлений, а физики, в частности, приходят в восторг от перспективы описать все, что вообще может случиться в материальном мире, с помощью небольшого количества правил.

Один из примеров хорошей теории, применимой во множестве случаев, – это теория Исаака Ньютона о всемирном тяготении, опубликованная 5 июля 1687 года в его «Математических началах натуральной философии». Это была первая современная научная теория, и, хотя впоследствии было доказано, что в некоторых случаях она неточна, в целом эта теория оказалась настолько хороша, что используется и сегодня. Более точную теорию тяготения – общую теорию относительности – разработал Эйнштейн в 1915 году.

Ньютоново описание гравитации можно уложить в одно математическое уравнение:



Эта формула может показаться простой или сложной – в зависимости от ваших математических познаний. В этой книге мы порой будем прибегать к математике. Тем читателям, которым она дается непросто, советуем пропускать уравнения и не особенно беспокоиться. Мы всегда будем стараться изложить ключевые идеи, не прибегая к математике. Добавили ее в основном из-за того, что она позволяет объяснить, почему вещи таковы, какие они есть. Без этого мы выглядели бы какими-то гуру физики, извлекающими глубокие истины прямо из воздуха, а ни один приличный автор этого не хочет.

Но вернемся к уравнению Ньютона. Представьте, что яблоко ненадежно держится на ветке. Мысли о силе притяжения, которые летним днем заставили конкретное спелое яблоко свалиться Ньютону на голову, согласно научному фольклору, стали источником его теории. Ньютон говорил, что на яблоко действует гравитация, которая тянет его к земле, и эта сила в уравнении представлена буквой F . Так что в первую очередь уравнение позволяет высчитать силу, действующую на яблоко, если вы знаете, что значат символы в правой части формулы.

Буква r обозначает расстояние между центром яблока и центром Земли. Оно возведено в квадрат, потому что Ньютон обнаружил, что сила зависит от квадрата расстояния между объектами. Если обойтись без математики, то это значит, что при увеличении расстояния между яблоком и центром Земли вдвое гравитация уменьшится в 4 раза. Если расстояние утроить, сила притяжения упадет в 9 раз. И так далее. Физики называют такое поведение законом обратных квадратов. Буквы m 1 и m 2 обозначают массу яблока и массу Земли, и их появление свидетельствует о понимании Ньютоном закономерности: сила гравитационного притяжения между двумя объектами зависит от произведения их масс. Но возникает вопрос: что такое масса? Этот вопрос интересен сам по себе, и, чтобы получить наиболее исчерпывающий ответ, придется подождать, пока мы не заведем разговор о квантовой частице, известной как бозон Хиггса. Грубо говоря, масса – это мера количества «материала» в чем-то; Земля массивнее яблока. Впрочем, такое определение недостаточно удачно. К счастью, Ньютон привел и способ измерения массы объекта независимо от закона гравитации, и этот способ выводится с помощью второго из трех законов движения, столь любимых каждым современным студентом-физиком.

Стр. 1 из 68

Научные редакторы Вячеслав Марача и Михаил Павлов


Издано с разрешения Apollo’s Children Ltd and Jeff Forshow и литературного агентства Diane Banks Associates Ltd.


Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».


© Brian Cox and Jeff Forshaw, 2011

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016

* * *

1. Что-то странное грядет

Квант. Это слово одновременно взывает к чувствам, сбивает с толку и завораживает. В зависимости от точки зрения это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться с неотвратимой странностью субатомной сферы. Для физика квантовая механика – одна из трех великих опор, на которых покоится понимание природы (две другие – это общая и специальная теории относительности Эйнштейна). Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала с толку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности. Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий. В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы. Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.

Это не только впечатляюще, но и удивительно, и, если бы построение моделей было единственной заботой квантовой теории, вы могли бы с полным правом спросить, в чем же вообще проблема. Наука, разумеется, не обязана быть полезной, но многие технологические и общественные изменения, совершившие революцию в нашей жизни, вышли из фундаментальных исследований, проводимых современными учеными, которые руководствуются лишь желанием лучше понять окружающий мир. Благодаря этим, вызванным только любопытством, открытиям во всех отраслях науки мы имеем увеличенную продолжительность жизни, международные авиаперевозки, свободу от необходимости заниматься сельским хозяйством ради собственного выживания, а также широкую, вдохновляющую и открывающую глаза картину нашего места в бесконечном звездном море. Но все это в каком-то смысле побочные результаты. Мы исследуем из любопытства, а не потому, что хотим добиться лучшего понимания реальности или разработать более эффективные безделушки.

Квантовая теория – возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Она полезна, потому что понимание поведения малейших кирпичиков мироздания укрепляет понимание всего остального. Она кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Несмотря на всю эту сложность, мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

Итак, чем больше мы узнаём об элементарной природе мироздания, тем проще оно нам кажется. Постепенно мы придем к пониманию всех законов и того, как эти маленькие кирпичики взаимодействуют, формируя мир. Но как бы мы ни увлекались простотой, лежащей в основе Вселенной, нужно обязательно помнить: хотя основные правила игры просты, их последствия не всегда легко вычислить. Наш повседневный опыт познания мира определяется отношениями многих миллиардов атомов, и пытаться вывести принципы поведения людей, животных и растений из нюансов поведения этих атомов было бы просто глупо. Признав это, мы не принижаем его важности: за всеми явлениями в итоге скрывается квантовая физика микроскопических частиц.

Представьте мир вокруг нас. Вы держите в руках книгу, сделанную из бумаги – перемолотой древесной массы. Деревья – это машины, способные получать атомы и молекулы, расщеплять их и реорганизовывать в колонии, состоящие из миллиардов отдельных частей. Они делают это благодаря молекуле, известной под названием хлорофилл и состоящей из ста с лишним атомов углерода, водорода и кислорода, которые имеют изогнутую особым образом форму и скреплены еще с некоторым количеством атомов магния и водорода. Такое соединение частиц способно улавливать свет, пролетевший 150 000 000 км от нашей звезды – ядерного очага объемом в миллион таких планет, как Земля, – и переправлять эту энергию вглубь клеток, где с ее помощью создаются новые молекулы из двуокиси углерода и воды и выделяется дающий нам жизнь кислород.

Именно эти молекулярные цепи формируют суперструктуру, объединяющую и деревья, и бумагу в этой книге, и все живое. Вы способны читать книгу и понимать слова, потому что у вас есть глаза и они могут превращать рассеянный свет от страниц в электрические импульсы, интерпретируемые мозгом – самой сложной структурой Вселенной, о которой мы вообще знаем. Мы обнаружили, что все вещи в мире – не более чем скопища атомов, а широчайшее многообразие атомов состоит всего из трех частиц – электронов, протонов и нейтронов. Мы знаем также, что сами протоны и нейтроны состоят из более мелких сущностей, именуемых кварками, и на них уже все заканчивается – по крайней мере, так мы думаем сейчас. Основанием для всего этого служит квантовая теория.

Таким образом, картину Вселенной, в которой обитаем мы, современная физика рисует с исключительной простотой; элегантные явления происходят где-то там, где их нельзя увидеть, порождая разнообразие макромира. Возможно, это самое выдающееся достижение современной науки – сведение невероятной сложности мира, включая и самих людей, к описанию поведения горстки мельчайших субатомных частиц и четырех сил, действующих между ними. Лучшие описания трех из четырех этих сил – сильного и слабого ядерных взаимодействий, существующих внутри атомного ядра, и электромагнитного взаимодействия, которое склеивает атомы и молекулы, – предоставляет квантовая теория. Лишь сила тяжести – самая слабая, но, возможно, самая знакомая нам сила из всех – в настоящий момент не имеет удовлетворительного квантового описания.

Новый подход к проблеме квантовой гравитации, над которой ученые бьются уже многие десятилетия, возвращает к основам и показывает, как «складываются» друг с другом «кирпичики», из которых построены пространство и время.

Как возникли пространство и время? Как они образовали гладкую четырехмерную пустоту, служащую фоном для нашего физического мира? Как выглядят они при ближайшем рассмотрении? Подобные вопросы возникают на переднем крае современной науки и подталкивают к исследованию квантовой гравитации - до сих пор пока еще не созданного объединения общей теории относительности Эйнштейна с квантовой теорией. Теория относительности описывает, как пространство и время в макроскопическом масштабе могут принимать бесчисленные формы, создавая то, что мы называем силой тяготения или гравитацией. Квантовая теория описывает законы физики, действующие в атомном и субатомном масштабах, полностью игнорируя эффекты гравитации. Теория квантовой гравитации должна описать в квантовых законах природу пространства-времени в самых малых масштабах - пространствах между самыми малыми известными элементарными частицами - и, возможно, объяснить ее через какие-то фундаментальные составляющие.

Основным кандидатом на эту роль часто называют теорию суперструн, но она пока не дала ответа ни на один из животрепещущих вопросов. Более того, следуя своей внутренней логике, она вскрыла еще более глубокие слои новых экзотических составляющих и взаимоотношений между ними, приводя к ошеломительному разнообразию возможных результатов.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Общеизвестно, что квантовая теория и общая теория относительности Эйнштейна не стыкуются друг с другом. Физики уже давно пытаются связать их в единую теорию квантовой гравитации, но больших успехов не добились.

Предлагаемый новый подход не вводит никаких экзотических положений, но открывает новый путь приложения известных законов к отдельным элементам пространства-времени. Эти элементы приходят в согласие подобно молекулам в кристалле.

Наш подход показывает, как известное нам четырехмерное пространство-время может динамически возникнуть из более фундаментальных компонентов. Более того, он позволяет предположить, как это пространство-время в микроскопическом масштабе постепенно переходит от гладкой непрерывности к причудливой фрактальности

В последние годы наша работа стала перспективной альтернативой изъезженной магистрали теоретической физики. Последовав простейшему рецепту - взять несколько фундаментальных составляющих, собрать их в соответствии с хорошо известными квантовыми принципами (без какой-либо экзотики), хорошенько перемешать и дать отстояться, - вы получите квантовое пространство-время. Процесс достаточно прост, чтобы его можно было смоделировать на портативном компьютере.

Иными словами, если, рассматривая пустое пространство-время (вакуум) как некую нематериальную субстанцию, состоящую из очень большого числа микроскопических бесструктурных элементов, позволить им взаимодействовать между собой в соответствии с простыми правилами теории гравитации и квантовой теории, то эти элементы спонтанно организуются в единое целое, которое во многих отношениях будет выглядеть так же, как наблюдаемая Вселенная. Процесс подобен тому, как молекулы организуются в кристаллическое или аморфное твердое тело.

При таком подходе пространство-время может оказаться похожим скорее на обычное смешанное жаркое, чем на сложный свадебный торт. Более того, в отличие от других подходов к квантовой гравитации, наш очень устойчив. Когда мы меняем детали своей модели, результат практически не изменяется. Такая устойчивость дает основания надеяться, что мы на правильном пути. Если бы результат был чувствителен к тому, куда мы поместили каждый кусочек нашего огромного ансамбля, мы получили бы колоссальное количество равновероятных барочных форм, что исключило бы возможность объяснения того, почему Вселенная оказалась именно такой, какая она есть.

Подобные механизмы самосборки и самоорганизации действуют в физике, биологии и других областях науки. Красивым примером служит поведение больших стай птиц, например скворцов. Отдельные птицы взаимодействуют лишь с небольшим числом соседей; вожака, который объяснял бы им, что нужно делать, нет. Тем не менее стая формируется и движется как единое целое, обладая коллективными, или производными свойствами, не проявляющимися в поведении отдельных особей.

Краткая история квантовой гравитации

Прежние попытки объяснения квантовой структуры пространства-времени как формирующейся в процессе самопроизвольного возникновения не принесли заметного успеха. Они исходили из евклидовой квантовой гравитации. Программа исследований была начата в конце 1970-х гг. и стала популярной благодаря книге «Краткая история времени» (Brief History of Time) физика Стивена Хокинга (Stephen Hawking), ставшей бестселлером. Эта программа исходит из принципа суперпозиции, фундаментального для квантовой механики. Любой объект, классический или квантовый, находится в некотором состоянии, характеризуемом, например, положением и скоростью. Но если состояние классического объекта может быть описано свойственным только ему набором чисел, то состояние квантового гораздо богаче: оно является суммой всех возможных классических состояний.

ТЕОРИИ КВАНТОВОЙ ГРАВИТАЦИИ

ТЕОРИЯ СТРУН
Поддерживаемая большинством физиков-теоретиков, эта теория касается не только квантовой гравитации, но и всех видов материи и сил. В ее основе лежит представление, что все частицы (включая гипотетические, переносящие гравитацию) представляют собой колеблющиеся струны

ПЕТЛЕВАЯ КВАНТОВАЯ ГРАВИТАЦИЯ
Главная альтернатива теории струн. Она привлекает новый метод примене- ния правил квантовой механики к общей теории относительности Эйнштейна. Пространство делится на дискретные «атомы» объема

ЕВКЛИДОВА КВАНТОВАЯ ГРАВИТАЦИЯ
Подход, получивший известность благодаря физику Стивену Хокингу, основан на предположении, что пространство-время возникает из общего квантового среднего всех возможных форм. В этой теории время считается равноправным с пространственными измерениями

КАУЗАЛЬНАЯ ДИНАМИЧЕСКАЯ ТРИАНГУЛЯЦИЯ
Этот подход, являющийся темой настоящей статьи, представляет собой современный вариант евклидова подхода. Он основан на аппроксимации пространства-времени мозаикой треугольников с изначальным различением пространства и времени. В малых масштабах пространство-время приобретает фрактальную структуру

Например, классический бильярдный шар движется по определенной траектории, и его положение и скорость в любой момент могут быть точно определены. В случае гораздо меньшего электрона все обстоит иначе. Его движение подчиняется квантовым законам, согласно которым электрон может существовать одновременно во множестве мест и обладать множеством скоростей. В отсутствие внешних воздействий из точки А в точку В электрон движется не по прямой, а по всем возможным путям одновременно. Качественная картина всех возможных путей его движения, собранных воедино, переходит в строгий математический «рецепт» для квантовой суперпозиции, сформулированный нобелевским лауреатом Ричардом Фейнманом (Richard Feynman), и дающий взвешенное среднее всех отдельных возможностей.

Пользуясь предложенным рецептом, можно рассчитать вероятность нахождения электрона в любом конкретном диапазоне положений и скоростей в стороне от прямого пути, по которому он должен был бы двигаться по законам классической механики. Отличительное свойство квантовомеханического поведения частицы - отклонения от единой четкой траектории, т.н. квантовые флуктуации. Чем меньше размер рассматриваемой физической системы, тем больше роль квантовых флуктуаций.

В евклидовой квантовой гравитации принцип суперпозиции применяется ко всей Вселенной в целом. В этом случае суперпозиция состоит не из различных траекторий частицы, а из возможных путей эволюции вселенной во времени, в частности форм пространства-времени. Чтобы свести задачу к виду, позволяющему искать решение, физики обычно рассматривают только общие форму и размер пространства-времени, а не каждое из его мыслимых искажений (см.: Jonathan J. Halliwell. Quantum Cosmology and the Creation of the Universe // Scientific American, December 1991).

В 1980–1990-х гг. исследования в области евклидовой квантовой гравитации прошли большой технический путь, связанный с разработкой мощных средств компьютерного моделирования. Используемые модели представляли геометрии искривленного пространства-времени с помощью элементарных «кирпичиков», которые для удобства считали треугольными. Сетки из треугольных ячеек позволяют эффективно аппроксимировать искривленные поверхности, поэтому они часто используются в компьютерной анимации. В случае моделирования пространства-времени эти элементарные «кирпичики» представляют собой обобщения треугольников применительно к четырехмерному пространству и называются 4-симплексами. Точно так же как склеивание треугольников их ребрами позволяет создавать искривленные двухмерные поверхности, склеивание «граней» четырехмерных симплексов (представляющих собой трехмерные тетраэдры) позволяет создать модель четырехмерного пространства-времени.

Сами «кирпичики» не имеют прямого физического смысла. Если бы можно было рассматривать пространство-время под сверхмощным микроскопом, никаких треугольников видно бы не было. Они представляют собой лишь аппроксимации. Единственная информация, имеющая физический смысл, содержится в их коллективном поведении в представлении, что каждый из них уменьшился до нулевого размера. В этом пределе геометрия «кирпичиков» (будь они треугольными, кубическими, пятиугольными или представляют собой любую смесь данных форм) не имеет никакого значения.

Нечувствительность к разнообразным мелкомасштабным деталям часто называют универсальностью. Явление, хорошо известное в статистической физике, изучающей движение молекул в газах и жидкостях: молекулы ведут себя почти одинаково, каким бы ни был их состав. Универсальность ассоциируется со свойствами систем, состоящих из большого числа отдельных элементов, и проявляется в масштабе, гораздо большем масштаба отдельной составляющей. Аналогичное утверждение для стаи птиц состоит в том, что окраска, размер, размах крыльев и возраст отдельных птиц не имеют никакого отношения к поведению стаи как целого. В макроскопическом масштабе проявляются лишь очень немногие микроскопические детали.

Съеживание

C помощью компьютерных моделей исследователи квантовой гравитации начали изучать эффекты суперпозиции форм пространства-времени, не поддающиеся изучению методами классической теории относительности, в частности сильно искривленные на очень малых расстояниях. Этот так называемый не-возмущающий режим больше всего интересует физиков, но почти не поддается анализу без применения компьютеров.

ОПИСАНИЕ ФОРМЫ ПРОСТРАНСТВА

МОЗАИКА ИЗ ТРЕУГОЛЬНИКОВ
Чтобы определить, как пространство формирует себя, физикам в первую очередь нужен способ описания его формы. Они описывают ее, используя треу гольники и их аналоги с большим числом измерений, мозаика из которых позволяет аппроксимировать искривленные формы. Кривизна в конкретной точке определяется полным углом, стягиваемым треугольниками, которые окружают эту точку. В случае плоской поверхности этот угол равен в точности 360°, но в случае криволинейных поверхностей он может быть меньше или больше

К сожалению, моделирование показало, что евклидова квантовая гравитация не позволяет учесть важные составляющие поведения. Все невозмущающие суперпозиции в четырехмерной вселенной оказались в принципе неустойчивыми. Квантовые флуктуации кривизны в малых масштабах, которые характеризуют различные наложенные вселенные, вносящие свои вклады в среднее, не компенсируют, а взаимно усиливают друг друга, заставляя все пространство съеживаться в маленький шар с бесконечным числом измерений. В таком пространстве расстояние между любыми двумя точками всегда остается очень малым, даже если его объем огромен. В некоторых случаях пространство обращается в другую крайность, становясь предельно тонким и протяженным, подобно полимеру с большим количеством ветвей. Ни одна из этих возможностей не похожа на нашу реальную Вселенную.

Прежде чем еще раз вернуться к допущениям, которые завели физиков в тупик, давайте рассмотрим одну странность полученного результата. «Кирпичики» четырехмерны, но в совокупности образуют либо пространство с бесконечным множеством измерений (съежившаяся вселенная), либо двухмерное пространство (вселенная-полимер). Как только допущение о больших квантовых флуктуациях вакуума выпустило джинна из бутылки, возникла возможность изменять самые фундаментальные понятия, например размерность. Возможно, классическая теория гравитации, в которой число измерений всегда считается определенным, не могла предвидеть такого результата.

Одно из следствий может несколько разочаровать любителей научной фантастики. Писатели-фантасты часто используют концепцию пространственно-временных туннелей, будто бы позволяющих сблизить между собой области, далеко отстоящие друг от друга. Они покоряют перспективной возможностью путешествий во времени и передачи сигналов со скоростью, превышающей скорость света. Несмотря на то что ничего подобного никогда не наблюдалось, физики допускают, что подобные туннели могут оказаться реабилитированными в рамках еще не созданной теории квантовой гравитации. В свете отрицательного результата компьютерного моделирования евклидовой квантовой гравитации возможность существования таких туннелей представляется крайне маловероятной. Пространственно-временные туннели имеют такое множество вариантов, что они должны преобладать в суперпозиции, делая ее неустойчивой, так что квантовая вселенная никогда не сможет вырасти за пределы маленькой, но очень сильно взаимосвязанной общности.

ПРИМЕНЕНИЕ КВАНТОВЫХ ПРАВИЛ К ПРОСТРАНСТВУ-ВРЕМЕНИ

УСРЕДНЕНИЕ
Пространство-время может принимать великое множество разнообразных форм. Согласно квантовой теории, форма, которую мы увидим с наибольшей вероятностью, представляет собой суперпозицию, или взвешенное среднее всех возможных форм. Составляя формы из треугольников, теоретики приписывают каждой из них вес в зависимости от конкретного способа связывания этих треугольников при построении данной формы. Авторы установили: для того чтобы полученное среднее согласовывалось с наблюдаемой реальной Вселенной, треугольники должны подчиняться определенным правилам, в частности содержать встроенные «стрелки», указывающие направление времени

В чем может быть корень бед? В поисках брешей и «свободных концов» евклидова подхода мы пришли к ключевой идее - одному компоненту, абсолютно необходимому для возможности приготовления нашего смешанного жаркого: код вселенной должен включать в себя принцип причинности, т.е. структура вакуума должна обеспечивать возможность однозначного различения причины и следствия. Причинность - неотъемлемая часть классических частной и общей теорий относительности.

В евклидову квантовую гравитацию причинность не включена. Определение «евклидова» означает, что пространство и время считаются равнозначными. Вселенные, входящие в евклидову суперпозицию, имеют четыре пространственных измерения вместо одного временного и трех пространственных. Поскольку евклидовы вселенные не имеют отдельного понятия времени, в них нет структуры, позволяющей располагать события в определенном порядке. У жителей таких вселенных не может быть понятий «причина» и «следствие». Хокинг и другие ученые, использующие евклидов подход, говорили, что «время мнимо» как в математическом, так и в разговорном смысле. Они надеялись, что причинность возникнет как макроскопическое свойство из микроскопических квантовых флуктуаций, не имеющих по отдельности признаков причинностной структуры. Однако компьютерное моделирование перечеркнуло их надежды.

СОВЕРШЕННО НОВОЕ ИЗМЕРЕНИЕ В ПРОСТРАНСТВЕ

В обычной жизни размерность пространства - это минимальное число измерений, необходимое для определения положения точки, например долгота, широта и высота. Это определение основано на допущении, что пространство непрерывно и подчиняется законам классической физики. А если пространство ведет себя не так просто? Что если его форма определяется квантовыми процессами, которые в обычной жизни не проявляются? В таких случаях физики и математики должны разработать более сложное представление о размерности. Число измерений может даже не обязательно быть целым, как в случае фракталов - структур, имеющих одинаковый вид во всех масштабах

ОБОБЩЕННЫЕ ОПРЕДЕЛЕНИЯ РАЗМЕРНОСТИ

Размерность по Хаусдорфу
Определение, сформулированное в начале XX в. немецким математиком Феликсом Хаусдорфом, исходит из зависимости объема V области от ее линейного размера r. В обычном трехмерном пространстве V пропорционально $r^3$. Показатель степени в этой зависимости и есть число измерений. «Объемом» могут считаться и другие показатели общего размера, например площадь. В случае прокладки Серпиньского V пропорционально $r^{1,5850}$. Это обстоятельство отражает тот факт, что данная фигура не заполняет всю площадь

Спектральная размерность
Данное определение характеризует распространение объекта или явления в среде в ходе времени, будь то капля чернил в сосуде с водой или заболевание в популяции. Каждая молекула воды или индивидуум в популяции имеют определенное число ближайших соседей, которое и определяет скорость диффузии чернил или распространения заболевания. В трехмерной среде размер чернильного облака растет пропорционально времени в степени 3/2. В прокладке Серпиньского чернила должны просачиваться сквозь извилистую форму, поэтому распространяются медленнее - пропорционально времени в степени 0,6826, чему соответствует спектральная размерность 1,3652

Применение определений
В общем случае разные способы вычисления размерности дают разные числа измерений, поскольку исходят из различных характеристик геометрии. Для некоторых геометрических фигур число измерений не постоянно. В часности диффузия может быть более сложной функцией, чем время в некоторой постоянной степени.
При моделировании квантовой гравитации упор делается на спектральную размерность. В один элементарный кирпичик модели квантового пространства-времени вводится малое количество некоей субстанции. Из этого кирпичика она распространяется случайным образом. Общее число кирпичиков пространства-времени, которых эта субстанция достигает за некоторый период времени, и определяет спектральную размерность

Вместо пренебрежения причинностью при соединении отдельных вселенных в расчете на то, что она возникнет в результате коллективной мудрости суперпозиции, мы решили включить причинностную структуру на гораздо более раннем этапе. Свой метод мы назвали динамической триангуляцией. Мы приписали каждому симплексу стрелку времени, направленную из прошлого в будущее. Затем мы ввели причинностное правило «склейки»: два симплекса должны склеиваться таким образом, чтобы их стрелки были сонаправлены. Понятие времени в склеиваемых симплексах должно быть одинаковым: время с постоянной скоростью должно течь в направлении этих стрелок, никогда не останавливаясь и не обращаясь вспять. В ходе времени пространство должно сохранять свою общую форму, не распадаться на отдельные части и не создавать пространственно-временных туннелей.

Сформулировав эту стратегию в 1998 г., мы показали на крайне упрощенных моделях, что правила склейки симплексов ведут к макроскопической форме, отличной от евклидовой квантовой гравитации. Это обнадеживало, но не означало, что принятые правила склейки достаточны для обеспечения устойчивости всей четырехмерной вселенной. Поэтому мы затаили дыхание, когда в 2004 г. наш компьютер был почти готов дать нам первые расчеты причинностной суперпозиции четырехмерных симплексов. Будет ли это пространство-время вести себя на больших расстояниях как протяженный четырехмерный объект, а не как сморщенный шар или полимер?

Представьте себе наш восторг, когда число измерений расчетной вселенной оказалось равным 4 (точнее, 4,02 ± 0,1). Это был первый случай вывода числа измерений, равного наблюдаемому, из основных принципов. Сегодня ввод понятия причинности в модели квантовой гравитации является единственным известным способом справиться с неустойчивостями суперпозиции пространственно-временных геометрий.

Пространство-время в целом

Упомянутое моделирование было первым в продолжающейся серии вычислительных экспериментов, в ходе которых мы пытаемся вывести физические и геометрические свойства квантового пространства-времени посредством компьютерного моделирования. Нашим следующим шагом было исследование формы пространства-времени на больших расстояниях и проверка ее соответствия реальному миру, т.е. предсказаниям общей теории относительности. В случае невозмущающих моделей квантовой гравитации, не содержащих априорного предположения о форме пространства-времени, такая проверка очень трудна - настолько, что в большинстве подходов к квантовой гравитации, включая теорию струн, кроме частных случаев, достигнутые успехи недостаточны для ее проведения.

УГЛУБЛЕНИЕ В ПРОСТРАНСТВО-ВРЕМЯ

Согласно расчетам авторов, спектральная размерность пространства-времени убывает с четырех (в пределе крупного масштаба) до двух (в пределе мелкого масштаба), и непрерывное пространство-время разбивается, превращаясь в разветвленный фрактал. Физики пока не могут понять, означает ли этот вывод, что в итоге пространство-время состоит из локализованных «атомов», или же оно строится из микроскопических структур, очень слабо связанных с обычным понятием геометрии

Как выяснилось, для того чтобы наша модель могла работать, необходимо с самого начала ввести так называемую космологическую постоянную - невидимую и нематериальную субстанцию, содержащуюся в пространстве даже при отсутствии каких-либо других форм материи и энергии. Такая необходимость стала хорошей новостью, так как космологи нашли экспериментальное подтверждение существования этой постоянной. Более того, полученная форма пространства-времени соответствовала геометрии де Ситтера, т.е. решению уравнений Эйнштейна для вселенной, не содержащей ничего, кроме космологической постоянной. Поистине замечательно, что составление ансамбля из микроскопических «кирпичиков» практически случайным образом - без каких либо предположений о симметрии или предпочтительной геометрической структуре - привело к пространству-времени, имеющему в больших масштабах высоко симметричную форму вселенной де Ситтера.

Динамическое возникновение четырехмерной вселенной практически правильной геометрической формы из основных принципов стало центральным достижением нашего моделирования. Вопрос о том, можно ли понять этот выдающийся результат в рамках представлений о взаимодействии неких еще не установленных «атомов» пространства-времени, и есть цель наших продолжающихся исследований. Поскольку мы убедились, что наша модель квантовой гравитации прошла ряд классических проверок, пришло время обратиться к экспериментам иного рода - выявлению отличительной квантовой структуры пространства-времени, которую классическая теория Эйнштейна выявить не смогла. В одном из таких экспериментов мы моделировали процесс диффузии: ввели в суперпозицию вселенных подходящий аналог чернильной капли и наблюдали, как она распространяется и возмущается квантовыми флуктуациями. Нахождение размера чернильного облака по прошествии некоторого времени позволяло нам определить число измерений в пространстве (см врезку).

Результат оказался ошеломляющим: число измерений зависит от масштаба. Иными словами, если диффузия продолжалась короткое время, то число измерений пространства-времени оказывалось иным, чем когда процесс диффузии шел долгое время. Даже те из нас, кто специализировался на квантовой гравитации, с трудом могли вообразить, как могло число измерений пространства-времени непрерывно изменяться в зависимости от разрешения нашего «микроскопа». Очевидно, пространство-время для малых объектов сильно отличается от такового для больших. Для малых объектов вселенная подобна фрактальной структуре - необычному виду пространства, в котором понятия размера просто не существует. Оно самоподобно, т.е. выглядит одинаковым во всех масшта-бах. Это значит, что не существует каких-либо объектов характеристического размера, которые могли бы служить чем-то вроде масштабной линейки.

Насколько мало это «малое»? Вплоть до размера около $10^{–34}$м квантовая вселенная в целом хорошо описывается классической четырехмерной геометрией де Ситтера, хотя с уменьшением расстояния роль квантовых флуктуаций возрастает. Тот факт, что классическое приближение остается пригодным вплоть до столь малых расстояний, удивителен. Из него вытекают очень важные следствия как для самых ранних этапов истории вселенной, так и для ее очень отдаленного будущего. В обоих этих пределах вселенная практически пуста. На самом начальном этапе квантовые флуктуации были столь велики, что материя едва обнаруживалась. Она была крошечным плотом в волнующемся океане. Через миллиарды лет после нас из-за быстрого расширения Вселенной вещество окажется настолько разреженным, что будет играть очень малую роль или даже вовсе не будет играть роли. Наш подход позволяет объяснить форму пространства в обоих предельных случаях.

ЧТО ТАКОЕ ПРИЧИННОСТЬ?

Причинность - это принцип, гласящий, что события происходят в определенной последовательности во времени, а не в беспорядке, что позволяет различать причину и следствие. В подходе к квантовой гравитации, принятом авторами, отличие причины от следствия выступает как фундаментальное по своей природе, а не выведенное свойство

В еще меньших масштабах квантовые флуктуации пространствавремени возрастают настолько, что классические интуитивные представления о геометрии полностью теряют смысл. Число измерений уменьшается с классических четырех примерно до двух. Однако, насколько мы можем судить, пространство-время остается непрерывным и не содержит каких-либо туннелей. Оно не столь экзотично, как бурлящая пространственновременная пена, какой его видели физик Джон Уиллер (John Wheeler) и многие другие. Геометрия пространства-времени подчиняется необычным и неклассическим законам, но понятие расстояния остается применимым. Сейчас мы пытаемся проникнуть в область еще меньших масштабов. Одна из возможностей состоит в том, что все-ленная становится самоподобной и при всех масштабах, меньших некоторого предела, выглядит одинаково. Если так, то вселенная не состоит из струн или атомов пространства-времени, а является миром бесконечной скуки: структура, найденная чуть ниже порога, по мере углубления в область все меньших размеров будет просто до бесконечности повторять себя.

Как смогут физики обойтись меньшим числом составляющих и технических средств, чем использовали мы для построения квантовой вселенной с реалистическими свойствами, трудно представить. Нам еще предстоит провести много проверок и экспериментов, например для того чтобы понять поведение вещества во Вселенной и его влияние на ее общую форму. Наша главная цель, как в случае любой теории квантовой гравитации, состоит в предсказании поддающихся наблюдению следствий, выведенных из микроскопической квантовой структуры. Это будет решающим критерием правильности нашей модели как теории квантовой гравитации.

Перевод: И.Е. Сацевич

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  • Planckian Birth of a Quantum de Sitter Universe. J. Ambjоrn, A. Gоrlich, J. Jurkiewicz and R. Loll in Physical Review Letters, Vol. 100, Article No. 091304; March 7, 2008. Есть препринт
  • The Complete Idiot’s Guide to String Theory. George Musser. Alpha, 2008.
  • The Emergence of Spacetime, or, Quantum Gravity on Your Desktop. R. Loll in Classical and Quantum Gravity, Vol. 25, No. 11, Article No. 114006; June 7, 2008. Есть препринт
  • Веб-сайт Ренаты Лолл

Ян Амбьорн (Jan Ambjоrn) , Рената Лолл (Renate Loll) и Ежи Юркевич (Jerzy Jurkewicz) разработали свой подход к проблеме квантовой гравитации в 1998 г. Амбьорн - член Королевской Датской академии, профессор института Нильса Бора в Копенгагене и Утрехтского университета в Нидерландах. Он известен как мастер тайской кухни - обстоятельство, которое издатели стремятся отметить в первую очередь. Рената Лолл занимает пост профессора Утрехтского университета, где она возглавляет одну из крупнейших в Европе групп, занимающихся исследованиями в области квантовой гравитации. Ранее работала в Институте физики гравитации Макса Планка в Гольме (Германия). В редкие часы досуга играет камерную музыку. Ежи Юркевич возглавляет отдел теории сложных систем в Физическом институте Ягеллонского университета в Кракове. В числе его прежних мест работы - Институт Нильса Бора в Копенгагене, где он был покорен красотой парусного спорта.