Какие звезды холодные и горячие. Холодные и

Любая звезда - желтая, голубая или красная - представляет собой раскаленный газовый шар. Современная классификация светил основывается на нескольких параметрах. К ним относится температура поверхности, размер и яркость. Цвет звезды, видимый ясной ночью, зависит главным образом от первого параметра. Самые горячие светила голубые или даже синие, самые холодные — красные. Желтые звезды, примеры которых названы ниже, занимают среднее положение по шкале температуры. В число этих светил входит и Солнце.

Различия

Тела, нагретые до разных температур, излучают свет с неодинаковой длинной волны. От этого параметра и зависит определяемый глазом человека цвет. Чем короче длина волны, тем горячее тело и тем ближе его цвет к белому и голубому. Справедливо это и для звезд.

Красные светила самые холодные. Температура их поверхности достигает лишь 3 тысяч градусов. Звезда желтая, как наше Солнце, уже горячее. Ее фотосфера нагревается до 6000º. Белые светила раскалены еще сильнее — от 10 до 20 тысяч градусов. И, наконец, голубые звезды являются самыми горячими. Температура их поверхности достигает от 30 до 100 тысяч градусов.

Общие характеристики

Особенности желтого карлика

Небольшие по размерам светила характеризуются внушительной продолжительностью жизни. этого параметра — 10 млрд лет. Солнце сейчас располагается примерно на середине жизненного цикла, то есть до схода с Главной последовательности и превращения в красного гиганта ему осталось около 5 миллиардов лет.

Звезда, желтая и относящаяся к типу «карлики», имеет размеры, сходные с солнечными. Источник энергии таких светил — синтез гелия из водорода. На следующую стадию эволюцию они переходят после того, как в ядре заканчивается водород и начинается горения гелия.

Помимо Солнца к желтым карликам относится А, Альфа Северной Короны, Мю Волопаса, Тау Кита и другие светила.

Желтые субгиганты

Звезды, похожие на Солнце, после исчерпания водородного топлива, начинают изменяться. Когда в ядре загорится гелий светило расширится и превратится в Однако эта стадия наступает не сразу. Сначала гореть начинают внешние слои. Звезда уже сошла с Главной последовательности, но еще не расширилась — она находится на стадии субгиганта. Масса такого светила обычно варьируется от 1 до 5

Стадию желтого субгиганта могут проходить и более внушительные по размерам звезды. Однако для них эта стадия меньше выражена. Самый известный субгигант на сегодня — это Процион (Альфа Малого Пса).

Настоящая редкость

Желтые звезды, названия которых приводились выше, относятся к довольно распространенным во Вселенной типам. Иначе дела обстоят с гипергигантами. Это настоящие исполины, считающиеся самыми тяжелыми, яркими и крупными и одновременно обладающими самой короткой продолжительностью жизни. Большинство известных гипергигантов относятся к ярким голубым переменным, однако встречаются среди них белые, желтые звезды и даже красные.

В число таких редких космических тел относится, например, Ро Кассиопеи. Это желтый гипергигант, по светимости в 550 тысяч раз опережающий Солнце. От нашей планеты она удалена на 12 000 В ясную ночь ее можно увидеть невооруженным глазом (видимый блеск — 4,52m).

Сверхгиганты

Гипергиганты — частный случай сверхгигантов. В число последних также входят желтые звезды. Они, по мнению астрономов, являются переходной стадией эволюции светил от голубого к красному сверхгиганту. Тем не менее в стадии желтого сверхгиганта звезда может просуществовать достаточно долго. Как правило, на этом этапе эволюции светила не погибают. За все время изучения космического пространства было зафиксировано только две сверхновых, порожденных желтыми сверхгигантами.

К таким светилам относят Канопус (Альфа Киля), Растабан (Бета Дракона), Бету Водолея и некоторые другие объекты.

Как видно, каждая звезда, желтая подобно Солнцу, обладает специфическими характеристиками. Однако у всех есть и нечто общее — это цвет, являющийся результатом нагрева фотосферы до определенных температур. Помимо названных, к подобным светилам относят Эпсилон Щита и Бету Ворона (яркие гиганты), Дельту Южного Треугольника и Бету Жирафа (сверхгиганты), Капеллу и Виндемиатрикс (гиганты) и еще множество космических тел. Нужно заметить, что цвет, обозначаемый в классификации объекта, не всегда совпадает с видимым. Происходит это потому, что истинный оттенок света искажается из-за газа и пыли, а также после прохождения через атмосферу. Для определения цвета астрофизики используют аппарат спектрограф: он дает значительно более точную информацию, чем человеческий глаз. Именно благодаря ему ученые могут различить голубые, желтые и красные звезды, удаленные от нас на огромные расстояния.

Какого цвета звезды

Цвета звезд. Звезды имеют самые разные цвета. У Арктура желто-оранжевый оттенок, Ригель бело-голубой, Антарес ярко-красный. Доминирующий цвет в спектре звезды зависит от температуры ее поверхности. Газовая оболочка звезды ведет себя почти как идеальный излучатель (абсолютно черное тело) и вполне подчиняется классическим законам излучения М.Планка (1858–1947), Й.Стефана (1835–1893) и В.Вина (1864–1928), связывающим температуру тела и характер его излучения. Закон Планка описывает распределение энергии в спектре тела. Он указывает, что с ростом температуры повышается полный поток излучения, а максимум в спектре сдвигается в сторону коротких волн. Длина волны (в сантиметрах), на которую приходится максимум излучения, определяется законом Вина: l max = 0,29/T . Именно этот закон объясняет красный цвет Антареса (T = 3500 K) и голубоватый цвет Ригеля (T = 18000 К). Закон Стефана дает полный поток излучения на всех длинах волн (в ваттах с квадратного метра): E = 5,67" 10 –8 T 4 .

Спектры звезд. Изучение звездных спектров – это фундамент современной астрофизики. По спектру можно определить химический состав, температуру, давление и скорость движения газа в атмосфере звезды. По доплеровскому смещению линий измеряют скорость движения самой звезды, например, по орбите в двойной системе.

В спектрах большинства звезд видны линии поглощения, т.е. узкие разрывы в непрерывном распределении излучения. Их называют также фраунгоферовыми или абсорбционными линиями. Они образуются в спектре потому, что излучение горячих нижних слоев атмосферы звезды, проходя сквозь более холодные верхние слои, поглощается на некоторых длинах волн, характерных для определенных атомов и молекул.

Спектры поглощения звезд сильно различаются; однако интенсивность линий какого-либо химического элемента далеко не всегда отражает его истинное количество в атмосфере звезды: в значительно большей степени вид спектра зависит от температуры звездной поверхности. Например, атомы железа есть в атмосфере большинства звезд. Однако линии нейтрального железа отсутствуют в спектрах горячих звезд, поскольку все атомы железа там ионизованы. Водород – это главный компонент всех звезд. Но оптические линии водорода не видны в спектрах холодных звезд, где он недостаточно возбужден, и в спектрах очень горячих звезд, где он полностью ионизован. Зато в спектрах умеренно горячих звезд с температурой поверхности ок. 10 000 К самые мощные линии поглощения – это линии бальмеровской серии водорода, образующиеся при переходах атомов со второго энергетического уровня.

Давление газа в атмосфере звезды также имеет некоторое влияние на спектр. При одинаковой температуре линии ионизованных атомов сильнее в атмосферах с низким давлением, поскольку там эти атомы реже захватывают электроны и, следовательно, дольше живут. Давление атмосферы тесно связано с размером и массой, а значит и со светимостью звезды данного спектрального класса. Установив по спектру давление, можно вычислить светимость звезды и, сравнивая ее с видимым блеском, определить «модуль расстояния» (M - m ) и линейное расстояние до звезды. Этот очень полезный метод называют методом спектральных параллаксов.

Показатель цвета. Спектр звезды и ее температура тесно связаны с показателем цвета, т.е. с отношением яркостей звезды в желтом и голубом диапазонах спектра. Закон Планка, описывающий распределение энергии в спектре, дает выражение для показателя цвета: C.I. = 7200/T – 0,64. У холодных звезд показатель цвета выше, чем у горячих, т.е. холодные звезды относительно ярче в желтых лучах, чем в голубых. Горячие (голубые) звезды выглядят более яркими на обычных фотопластинках, а холодные звезды выглядят ярче для глаза и особых фотоэмульсий, чувствительных к желтым лучам.

Спектральная классификация. Все разнообразие звездных спектров можно уложить в логичную систему. Гарвардская спектральная классификация впервые была представлена в Каталоге звездных спектров Генри Дрэпера , подготовленного под руководством Э.Пикеринга (1846–1919). Сначала спектры были расставлены по интенсивности линий и обозначены буквами в алфавитном порядке. Но развитая позже физическая теория спектров позволила расположить их в температурную последовательность. Буквенное обозначение спектров не изменили, и теперь порядок основных спектральных классов от горячих к холодным звездам выглядит так: O B A F G K M. Дополнительными классами R, N и S обозначены спектры, похожие на K и M, но с иным химическим составом. Между каждыми двумя классами введены подклассы, обозначенные цифрами от 0 до 9. Например, спектр типа A5 находится посередине между A0 и F0. Дополнительными буквами иногда отмечают особенности звезд: «d» – карлик, «D» – белый карлик, «p» – пекулярный (необычный) спектр.

Наиболее точную спектральную классификацию представляет система МК, созданная У.Морганом и Ф.Кинаном в Йеркской обсерватории. Это двумерная система, в которой спектры расставлены как по температуре, так и по светимости звезд. Ее преемственность с одномерной Гарвардской классификацией в том, что температурная последовательность выражена теми же буквами и цифрами (A3, K5, G2 и т.д.). Но дополнительно введены классы светимости, отмеченные римскими цифрами: Ia, Ib, II, III, IV, V и VI, соответственно указывающие на яркие сверхгиганты, сверхгиганты, яркие гиганты, нормальные гиганты, субгиганты, карлики (звезды главной последовательности) и субкарлики. Например, обозначение G2 V относится к звезде типа Солнца, а обозначение G2 III показывает, что это нормальный гигант с температурой примерно как у Солнца.

ГАРВАРДСКАЯ СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ

Спектральный класс

Эффективная температура, К

Цвет

26000–35000

Голубой

12000–25000

Бело-голубой

8000–11000

Белый

6200–7900

Желто-белый

5000–6100

Желтый

3500–4900

Оранжевый

2600–3400

Красный

«Белые», – с уверенностью отвечаешь ты. Действительно, если взглянуть на ночное небо, то можно увидеть множество белых звезд. Но значит ли это, что звезд другого цвета не бывает? Может мы просто их не замечаем?

Звезды – это гигантские скопления раскаленного газа. Состоят они в основном из двух видов газа – водорода и гелия. Из-за синтеза водорода и гелия происходит выброс энергии, благодаря которому звезды такие яркие и горячие и, наверное, поэтому кажутся нам белыми. А что насчет самой известной звезды – ? Она уже не кажется нам такой белой, и больше похожа на желтую. А еще есть красные, коричневые, голубые звезды.

Для того, чтобы понять, почему звезды бывают разных цветов, надо проследить весь жизненный путь звезды от момента ее возникновения, до полного угасания.

Photo by Nigel Howe
Зарождение звезды начинается с гигантского облака пыли, называемого туманностью . Сила гравитации заставляет пыль притягиваться друг к другу. Чем больше она стягивается, тем сильнее становится сила гравитации. Это приводит к тому, что облако начинает нагреваться и зарождается протозвезда . Как только ее центр станет достаточно горячим, начнется ядерный синтез, который положит начало молодой звезде. Теперь эта звезда будет жить и вырабатывать энергию в течение миллиардов лет. Этот период ее жизни называется «главной последовательностью» . Звезда будет оставаться в таком состоянии до тех пор, пока не сгорит весь водород. Как только закончится водород, внешняя часть звезды начнет расширяться, и звезда превратится в Красного гиганта – звезду с низкой температурой и сильным свечением. Пройдет какое-то время и ядро звезды начнет вырабатывать железо. Этот процесс заставит звезду разрушаться. А что произойдет дальше зависит от размера звезды. Если она была среднего размера, то станет Белым карликом . Большие же звезды вызовут огромный ядерный взрыв и станут Сверхновыми звездами , которые закончат свою жизнь, превратившись в черные дыры или нейтронные звезды.

Теперь ты понимаешь, что каждая звезда проходит разные пути своего развития и постоянно меняет свой размер, цвет, яркость, температуру. Отсюда столько разновидностей звезд. Самые маленькие звезды – красные. Средние звезды имеют желтую окраску, например, наше Солнце. Звезды побольше – синие, они являются самыми яркими звездами. Коричневые карлики имеют очень маленькую энергию и не способны компенсировать потерю энергии на излучение. Белые карлики – это постепенно остывающие звезды, которые вскоре становятся невидимыми и темными.

Единственная звезда нашей Солнечной системы, Солнце, относится к типу «желтых карликов». Полярная звезда, которая указывает путь морякам – голубой сверхгигант. А ближайшая к Солнцу звезда Проксима Центавра является красным карликом. Большинство звезд во Вселенной являются также красными карликами. А мы видим все звезды белыми, почему? Оказывается, виной тому тусклость звезд и наше зрение. Оно недостаточно зоркое, чтобы уловить разные цвета таких звезд. Но цвет самых ярких звезд мы, все таки, можем различить.

Теперь ты знаешь, что звезды бывают не только белые и сможешь легко справиться с заданием.

Задание:

  1. Нарисуй небо полное разноцветных звезд. Именно такое небо, которое мы видели бы, если бы имели более зоркое зрение.

Специалисты выдвигают несколько теорий их возникновения. Наиболее вероятная из низ гласит о том, что такие звезды голубого цвета, очень давно были двойными, и у них происходил процесс слияния. Когда 2 звезды объединяются, то возникает новая звезда с гораздо большой яркостью, массой, температурой.

Голубые звезды примеры:

  • Гамма Парусов;
  • Ригель;
  • Дзета Ориона;
  • Альфа Жирафа;
  • Дзета Кормы;
  • Тау Большого Пса.

Звезды белого цвета — белые звезды

Один ученый обнаружил очень тусклую звезду белого цвета, которая была спутником Сириуса и она получила название Сириус В. Поверхность это уникальной звезды разогрета до 25000 Кельвинов, а радиус её маленький.

Белые звезды примеры:

  • Альтаир в созвездии Орла;
  • Вега в созвездии Лиры;
  • Кастор;
  • Сириус.

Звезды желтого цвета — желтые звезды

Такие звезды имеют свечение желтого цвета, а их масса находиться в пределах массы Солнца — это около 0,8-1,4. Поверхность таких звезд обычно разогрета до температуры 4-6 тыс. Кельвинов. Живет такая звезда около 10 млрд. лет.

Желтые звезды примеры:

  • Звезда HD 82943;
  • Толиман;
  • Дабих;
  • Хара;
  • Альхита.

Звезды красного цвета — красные звезды

Первые красные звезды открыли в 1868 году. Их температура довольно таки низкая, а внешние слои красных гигантов заполнены большим количеством углерода. Ранее подобные звезды составляли два спектральных класса — N и R, но сейчас ученые смогли определить еще один общий класс — C.

В ясную ночь, присмотревшись, можно увидеть на небе мириады разноцветных звезд. Задумывались ли вы, от чего зависит оттенок их мерцания, и какие бывают цвета небесных светил?

Цвет звезды определяется температурой ее поверхности . Россыпь светил, словно драгоценные камни, имеет бесконечно разнообразные оттенки, словно волшебная палитра художника. Чем горячее объект, тем энергия излучения с его поверхности выше, а значит, короче длина испускаемых волн.

Даже незначительная разница в длине волны меняет воспринимаемый человеческим глазом цвет. Самые длинные волны имеют красный оттенок, с увеличением температуры он меняется на оранжевый, желтый, переходит в белый, а затем становится бело-синим.

Газовая оболочка светил выполняет функции идеального излучателя. По цвету звезды можно вычислить ее возраст и температуру поверхности. Конечно, оттенок при этом определяется не «на глаз», а с помощью специального инструмента - спектрографа.

Изучение спектра звезд - фундамент астрофизики нашего времени. То, какие бывают цвета небесных светил, является чаще всего единственной доступной для нас информацией о них.

Голубые звезды

Звезды голубого цвета - самые большие и горячие. Температура их внешних слоев составляет, в среднем, 10000 по Кельвину, а может достигать и 40000 для отдельных звездных гигантов.

В этом диапазоне излучают новые звезды, только начинающие свой «жизненный путь». Например, Ригель , одна из двух главных светил созвездия Ориона, голубовато-белая.

Желтые звезды

Центр нашей планетной системы - Солнце - имеет температуру поверхности, превосходящую 6000 по Кельвину. Из космоса оно и подобные ему светила выглядят ослепительно белыми, хотя с Земли кажутся, скорее, желтыми. Золотые звезды имеют средний возраст.

Из других известных нам светил белой звездой является и Сириус , хотя на глаз его цвет определить довольно сложно. Это происходит потому, что он занимает низкое положение над горизонтом, и по пути к нам его излучение сильно искажается за счет многократного преломления. В средних широтах Сириус, часто мерцая, способен всего за полсекунды продемонстрировать весь цветовой спектр!

Красные звезды

Темный красноватый оттенок имеют звезды с низкой температурой , например, красные карлики, масса которых составляет менее 7,5% от веса Солнца. Их температура ниже 3500 по Кельвину, и хотя их свечение представляет собой богатый перелив множества цветов и оттенков, мы видим его красным.

Гигантские светила, чье водородное топливо закончилось, также выглядят красными или даже коричневыми. В целом, в этом диапазоне спектра находится излучение старых и остывающих звезд.

Отчетливый красный оттенок имеет вторая из главных звезд созвездия Ориона, Бетельгейзе , а чуть правее и выше ее располагается на карте неба Альдебаран , имеющий оранжевый цвет.

Старейшая красная звезда из ныне существующих - HE 1523-0901 из созвездия Весов - гигантское светило второго поколения, найденное на окраинах нашей галактики на удалении в 7500 световых лет от Солнца. Ее возможный возраст составляет около 13,2 миллиарда лет, что не намного меньше предполагаемого возраста Вселенной.